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Ensemble simulation is a commonly used technique in operational forecasting of weather

and floods. Multi-member ensemble output is usually large, multivariate, and challenging

to interpret interactively. Forecast meteorologists and hydrologists are interested in under-

standing the uncertainties associated with the simulation; specifically variability between

the ensemble members. The visualization of ensemble members is currently accomplished

through spaghetti plots or hydrographs.

To improve visualization techniques and tools for forecasters, we conducted a user-

study to evaluate the effectiveness of existing uncertainty visualization techniques on 1D

and 2D synthetic datasets. We designed an uncertainty evaluation framework to enable

easier design of such studies for scientific visualization. The techniques evaluated are er-

rorbars, scaled size of glyphs, color-mapping on glyphs, and color-mapping of uncertainty

on the data surface. Although we did not find a consistent order among the four tech-

niques for all tasks, we found that the efficiency of techniques used highly depended on
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the tasks being performed. Errorbars consistently underperformed throughout the experi-

ment. Scaling the size of glyphs and color-mapping of the surface performed reasonably

well.

With results from the user-study, we iteratively developed a tool named ‘Noodles’ to

interactively explore the ensemble uncertainty in weather simulations. Uncertainty was

quantified using standard deviation, inter-quartile range, width of the 95% confidence in-

terval, and by bootstrapping the data. A coordinated view of ribbon and glyph-based

uncertainty visualization, spaghetti plots, and data transect plots was provided to two me-

teorologists for expert evaluation. They found it useful in assessing uncertainty in the data,

especially in finding outliers and avoiding the parametrizations leading to these outliers.

Additionally, they could identify spatial regions with high uncertainty thereby determining

poorly simulated storm environments and deriving physical interpretation of these model

issues.

We also describe uncertainty visualization capabilities developed for a tool named

‘FloodViz’ for visualization and analysis of flood simulation ensembles. Simple mem-

ber and trend plots and composited inundation maps with uncertainty are described along

with different types of glyph based uncertainty representations. We also provide feedback

from a hydrologist using various features of the tool from an operational perspective.

Key words: geo-visualization, uncertainty, uncertainty quantification, uncertainty visual-

ization, ensemble simulation, meteorological data, hydrological data, tool design, spaghetti

plots, glyph based techniques, visual interaction techniques, exploratory data analysis
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CHAPTER 1

INTRODUCTION

Uncertainty is an inseparable component of almost everything we do. We go about

our day-to-day lives with the assumption and expectation that most things will occur per

the norm. For example, we depend on the proper functioning of the alarm clock, toaster,

car’s engine, subway trains, electronic office keys, telephone, and a myriad of other de-

vices for our daily activities. All these devices operate at a certain level of certainty and

the odds of something going wrong may be quite low but always existent. We also deal

with uncertainty in our dealings with people, in the choices we make, in the outcome of

elections, in the resulting policies, in the forces that govern the economy, and in many

other manifestations.

Commonly, we strive to understand and minimize uncertainty or use it to our benefit,

be it engineering better infrastructure or arriving at policy decisions. Depending on the

importance of the phenomenon and magnitude of associated uncertainty, we often try to

make efforts to understand the phenomena and identify the sources of uncertainty. Such

efforts take time to perfect and we often find ourselves trying to estimate the phenomena,

avoid it, or find ways to insure against it. Again, sometimes none of this is possible or

feasible.
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Weather and flood hazards are two examples of such phenomena. While the general

reliability of weather and flood forecasts has improved significantly over the last decade

and sufficient warning is often available ahead of time, we are still significantly affected

by severe weather events. With the goal of saving life and property, significant resources

are invested in the simulation of such events to support the nation’s human and economic

well being.

These geophysical simulations tend to be large and often prohibitively expensive. The

rapid progress in supercomputing has greatly benefited simulation science. Researchers

are able to design simulations with ever more sophistication and resolution which produce

data-sets that are often magnitudes larger in size than used previously. Scientists have

about as much time as they had earlier to analyze and make sense of these datasets. Using

conventional approaches and summary descriptors of data are becoming inadequate as

large parts of the data tend to get ignored in the analysis.

The modeling itself is far from perfect. Uncertainty abounds in these simulations and

its sources are many. Modeling imperfections, accuracy of the input data, resolution of the

model, numerical errors, and computational constraints are some of the potential sources

of uncertainty. Scientists often use multiple model simulations using different sets of pa-

rameters or initial conditions, called ‘Ensemble’ simulations, to capture some of the mod-

eling uncertainties and to account for various scenarios. These datasets are even larger. To

improve forecasts, it is important to understand the associated uncertainties in order to im-

prove the simulation design leading to better approximation of the geophysical processes.
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Visualization and visual analytics are emerging as important techniques in enabling

scientists in seeing and interacting with huge amounts of data thereby facilitating more

in-depth analysis. With the correct set of techniques, valuable information can be derived

from an otherwise complex dataset. Visualization is almost becoming indispensable in

many disciplines because of the ever increasing size and complexity of datasets. In partic-

ular, scientists are beginning to feel a need to be able to quantify and visualize uncertainty

in their data.

There is a general lack of techniques and tools for the visualization of uncertainty,

particularly in operational setups. Operational personnel at National Oceanographic and

Atmospheric Administration’s (NOAA) weather forecast offices routinely use ensemble

simulations but have limited analysis capabilities. This dissertation is aimed to develop in-

novative, practical, and usable uncertainty visualization techniques and tools with a focus

on improving operational usability. We hope that this effort will bridge some of the gap

that exists between advances in simulation and visualization science, and the availability

of tools and techniques to analyze the data.

1.1 Research Statement

The objective of this dissertation is the design, development, and evaluation of tech-

niques and tools for uncertainty visualization that are new and improved over the currently

used techniques for visualization of uncertainty in ensemble simulations of weather and

river flow for operational activities.
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1.2 Motivation

The motivation for this work stems from initial collaborative research with meteo-

rologists and hydrologists. Both meteorological and hydrological simulations suffer from

being imprecise and subject to input and modeling variability. Ensembles are commonly

used to account for various possible scenarios in both. An ensemble can be defined as a

collection of multiple simulation runs over the same domain or extent and for the same

period of time, but with slightly perturbed initial conditions or different parametrizations,

and sometime both, with the objective of being able to capture individual model differ-

ences and variations. In this dissertation, parameter ensembles of weather simulations and

multi-input ensemble of hydrological simulations are discussed as representative exam-

ples.

The typical technique used for the analysis of weather ensembles is a spaghetti plot as

illustrated in Figure 1.1. The technique available to hydrologists in visualizing ensemble

output is by the use of spaghetti plot-like hydrographs as illustrated in Figure 1.2. A

spaghetti plot is a collection of iso-valued contours from the different ensemble members

over a single spatial domain at fixed pressure levels. A hydrograph is like a spaghetti-plot

but constructed by tracing water-level heights at a location over a period of time.

While there are a number of tools to visualize weather simulation data, to the best of

our knowledge, there are no tools available to visualize ensemble output. Meteorologists

and hydrologists are interested in identifying spatial and temporal regions where the indi-

vidual model runs agree or disagree. They are also interested in identifying which model

runs are poor so as to eliminate them in the final analysis. The use of spaghetti plots alone
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Figure 1.1

Example of a spaghetti plot used in operational meteorological analysis.

Figure 1.2

Example of a hydrograph used in operational river forecast analysis.
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makes it challenging to perform these tasks. Often overlooked, spaghetti plots should

not be interpreted without the underlying gradient, nor should they by used to compare

spatially separate locations [107].

Meteorological data is inherently 3D and temporal in nature and the unavailability of

visualization techniques forces meteorologists to throw away most of this data. Hydrol-

ogists are also constrained by the inability to visualize variations of individual ensemble

members over a spatial extent or across a cross-section of the river. There is a wide body

of research in the field of uncertainty visualization but it has not found its way into op-

erational settings. The tools and techniques available to operational meteorologists and

hydrologists for ensemble uncertainty visualization are very limited and this dissertation

attempts to address and alleviate some of these limitations.

1.3 Contributions

The main contributions of this dissertation are:

• Design of an Uncertainty Evaluation Framework that helps to classify, categorize,
and design uncertainty visualizations for scientific data. Note that other existing
frameworks can be encompassed in this framework.

• Evaluation of existing uncertainty visualization techniques to find guidelines for the
effective visualization of uncertainty in 1D and 2D datasets.

• Design of two new uncertainty visualization techniques, graduated glyphs and grad-
uated ribbons.

• Design of a software prototype that allows interactive multi-variable and multi-
technique uncertainty visualization for large ensembles of meteorological simula-
tions.

• Simulation of multiple severe weather events and use of the tool to derive insight
into parametrizations used for the modeling.

6
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• Design of uncertainty visualization capabilities for a flood forecasting and analysis
tool.

1.4 Organization

The rest of the document is organized as follows. The next chapter discusses the body

of existing literature in the field of uncertainty visualization. It also reflects our initial ef-

fort in understanding the state of research and identifying compelling questions that merit

investigation. Chapter 3 discuses the Uncertainty Evaluation Framework and uncertainty

visualizations techniques developed and used in this dissertation. Chapter 4 presents the

results of a user-study designed to understand the effectiveness of commonly used uncer-

tainty visualization techniques. Based on some of the results of the user-study, a prototype

of a tool for the visualization of uncertainty in ensemble simulations called ‘Noodles’

is presented in Chapter 5. The chapter also discusses an iterated and improved version

of the software prototype called ‘Noodles 2’, along with the studied datasets. Chapter

6 discusses application of some of the uncertainty visualization techniques for enabling

ensemble analysis capabilities in a river-flow and flood mapping tool named ‘FloodViz’.

Chapter 7 presents concluding remarks and Chapter 8 highlights avenues and ideas for

future research.

7
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CHAPTER 2

BACKGROUND

This chapter provides an overview of the uncertainty visualization literature followd

by a discussion of issues that affects meteorological and hydrological ensembles.

2.1 Understanding Uncertainty

A lot of research has been conducted in understanding, quantifying, and developing

techniques to visualize uncertainty. The following is a definition of uncertainty given by

Djurcilov et al. [24]: “Uncertainty is a multi-faceted characterization about data, whether

from measurements and observations of some phenomenon, and predictions made from

them. It may include several concepts including error, accuracy, precision, validity, quality,

variability, noise, completeness, confidence, and reliability.”

2.1.1 Uncertainty in Data

For a long time, the term uncertainty was used in a rather loose sense. Researchers

recognized the need to clearly define uncertainty as it was a necessary step before trying

to solve the visualization problem [15, 38, 74]. The International Bureau of Weights and

Measures (BIPM) - International Committee for Weights and Measures (CIPM) recog-

nized the broad scenarios from which uncertainty may arise and suggested two measures
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to estimate uncertainty [7, 8]. The first measure, called Type A evaluation of standard

uncertainty, is derived by mathematical and statistical approaches such as standard devia-

tions and analysis of variance. The second measure, called Type B evaluation of standard

uncertainty, is more subjective and is based on scientific judgement such as experience and

specifications. They also defined uncertainty to have ‘random’ and ‘systematic’ compo-

nents which are conditioned by a mathematical model.

The National Institute for Science and Technology (NIST) [94] suggested a ‘combined

standard uncertainty’. A law of the propagation of uncertainty was provided based on a

root-of-the-sum-of-the-squares (RSS) method. ‘Expanded uncertainty’ was a term coined

to express uncertainty defined by an interval that bounded the measurement. Their defini-

tion included correction factors arising from recognized system effects.

Based on the BIPM guide, Mauris et al. [60] proposed a fuzzy approach to measure un-

certainty. While these are generic approaches, most scientific disciplines have specialized

metrics and methods to quantify uncertainty specific to the domain.

2.1.1.1 Uncertainty Visualization Pipeline

Typically, data undergoes various changes before visualization: it is measured or gen-

erated, stored, altered, refined, and eventually visualized. Uncertainty can be introduced

to the data at various stages in this process. Pang et al. [74] called this the Uncertainty

Visualization Pipeline and divided it into three stages: data acquisition, data refining, and

visualization, and showed how uncertainty can be introduced in any of these stages (Fig-

ure 2.1).
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Uncertainty in acquisition can be introduced because of instrument sensitivities, mod-

eling conditions, and human error. Raw data is rarely used in analysis or visualization.

Often various types of transformations such as resampling, rescaling, or quantization are

applied to the data which introduce uncertainties. The choice of the visualization tech-

nique can also introduce uncertainties in the representation. This can creep in silently.

And of course, human perception can play a significant role in the visual representation

chosen.

Figure 2.1

Uncertainty visualization pipeline of Pang et al. [74].

2.1.1.2 Taxonomies and Classification of Proposed Techniques

A number of techniques have been proposed to study and classify uncertainty visu-

alization techniques. Johnson and Sanderson [41] provided an overview of the current

research and identified important goals for further research. MacEachren [55] touched
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upon a number of aspects of geospatial uncertainty and discussed conceptual models of

spatial uncertainty in a cartographic context.

Pang et al. [74] broadly classified the techniques into adding glyphs, adding geome-

try, modifying geometry, modifying attributes, animation, sonification, and psycho-visual

approaches (Table 2.1). Recently, Thomson et al. [96] presented a typology to visualize

uncertain information pertinent to geospatially referenced data. Their typology was devel-

oped keeping the tasks of an information analyst in mind. Gershon [29] presented a short

discussion on imperfections in information and a taxonomy of the causes of imperfec-

tion in knowledge stressing the need to develop better representations (Figure 2.2). Some

researchers have also discussed uncertainty cataloguing techniques [19, 53]

Table 2.1

Classification of uncertainty visualization techniques by Pang et al. [74].

Approach
Application

Radiosity Animation Interpolation Flow
Add glyphs spherical ladders uncertainty ellipsoidal
Add geometry show angels fat surfaces,

bumps
ribbons

Modify geome-
try

affine trans-
form

IFS, dis-
placement

Modify At-
tributes

reflectivity,
textures

bump-
mapping

pseudo-color

Animation magnitude,
frequency

oscillate oscillate batons-
ranking

Sonification pitch, instru-
ment

duration

Psycho-Visual left/right subliminal

11
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Figure 2.2

High-level taxonomy of imperfections in knowledge by Gershon [29].

2.1.1.3 Uncertainty Visualization Techniques

A number of disparate fields of research have successfully researched and applied un-

certainty visualization techniques. Schmidt et al. [83] looked at ways of representing the

multivariate nature of bathymetric uncertainty (Figure 2.3). Rheingans and Joshi [79] visu-

alized the positional uncertainty of molecules. Strothotte et al. [93] used non-photorealistic

techniques to present uncertainty of architectural reconstructions (Figure 2.4). Li et al.

[49] visualized uncertainty in astrophysical data (Figure 2.5) and Lundstrom et al. [54]

presented a probabilistic animation method to illustrate uncertainty in medical volume

renderings (Figure 2.6). Lodha et al. [51] used sound for the depiction of uncertainty and

Cedilnik and Rheingans [18] demonstrated procedural annotation techniques.

Olston and Mackinlay [72] argued that visualization methods should be different for

statistical uncertainty and bounded uncertainty since statistical uncertainty representations

potentially incorporate infinite ranges of values. They proposed ambiguation as the solu-
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Figure 2.3

Underwater uncertainty in a CAVE environment [83].

Figure 2.4

Uncertainty in architectural renderings [93].
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Figure 2.5

Positional uncertainty of astrophysical data[49].

Figure 2.6

Probabilistic Direct Volume Rendering of medical data [54].
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tion in which statistical graphics are modified or augmented with visual cues that enhance

the notion of unboundedness. Huang [37] showed how a multivariate scatterplot can be

created by overloading the visual channels such as color, size, and background color to

show the quality of information. Potter et al. [76] illustrated how uncertainty quantified by

statistical estimates can be presented in data plots (Figure 2.7).

Figure 2.7

Uncertainty in data plots [76].

2.1.1.4 Visualization of Geo-Spatial Uncertainty

Geospatial uncertainty and its representation have been well studied by researchers.

MacEachren [55] identified challenges in geospatial uncertainty visualization, underlining

the difference between data quality and uncertainty. He addressed the representational
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issues and applicability of Bertin’s graphic variables [6], proposed conceptual models of

spatial uncertainty, and described how they relate to cartography. He also studied visual

metaphors and how they affect the interpretation of maps [56] which provides valuable in-

sight into map symbology for cartographic visualization. MacEachren [55] also suggested

the use of hue, saturation, and intensity for representing uncertainty on maps. He also

stressed the need to understand the objective of a visualization to justify a good design.

Pang et al. identified a family of techniques that are applicable to geospatial uncer-

tainty visualization [73]. Ehlschlaeger et al. [28] showed how animation could be used

to depict uncertainty of elevation data. Wittenbrink et al. [108] proposed applying mul-

tivariate glyphs for environmental flow visualization (Figure 2.8). Recently, Potter et al.

[77] presented an ensemble visualization framework ‘Ensemble-Vis’ that allows the ex-

ploration and generation of visual summaries of a weather ensemble (Figure 2.9).

Figure 2.8

Uncertainty in vector data [108].
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Figure 2.9

Ensemble-Vis plugin for CDAT [77].

2.1.1.5 Perceptual Attributes in Uncertainty Visualization

Efforts have been made to identify potential visual attributes that could be used for

uncertainty visualization. Hengl and Toomanian [35] illustrated how color mixing and

pixel mixing can be used to visualize uncertainty arising from prediction error in spatial

prediction models from soil science applications. Jiang et al. [40] used hue and lightness

to show fuzzy spatial datasets. Davis and Keller [21] identified value, color, and texture

as potentially the best choices for representing uncertainty on static maps. More recently,

Hengl [34], like MacEachren [55], made a case for using hue, saturation, and intensity,

suggesting the inverse mapping of color saturation to the magnitude of uncertainty.

Generic perception and visualization guidelines by Bertin [6], Tufte [99, 100, 101],

and Ware [103] also provide insight that could be of value in representing uncertainty.
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2.1.2 Evaluation of Uncertainty Visualization Techniques

Some user-studies have also been conducted to bridge the gap between proposed un-

certainty visualization techniques and evaluating their effectiveness, but most are domain

specific studies [9, 47, 57, 81, 86, 105]. There is some justification to that. Uncertainty

representations in many processes are inherent and unique to the task at hand. Blenkin-

sop and Fisher [9] conducted a user study to evaluate uncertainty visualizations of fuzzy

classification of satellite imagery. They found that users were highly successful at deter-

mining classification uncertainty using greyscale representations in comparison to random

animation and serial animation. They found that serial animation performed the weak-

est. Zuk and Carpendale [109] presented a theoretical analysis of uncertainty visualization

(Table 2.2) in which they evaluated eight uncertainty visualizations from various sources

on widely accepted principles from Bertin [6], Tufte [99, 100, 101], and Ware [103]. They

presented a set of heuristics and how pertinent each heuristic was with respect to the sam-

pled visualizations. They stressed the need for more research in human factors and per-

ception.

Leitner and Buttenfield [47] conducted an experiment where participants had to make

two sitting decisions, one at a park followed by another at an airport based on a set of

predetermined planning criteria. The authors found that the addition of certainty informa-

tion significantly improved the number of correct responses. Additionally, they found that

color saturation was not especially effective.

Harrower [32] asked whether the presentation of uncertainty on maps alters the way

people solve problems and emphasized the need to conduct longitudinal studies to identify
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reasons why a subject makes a correct or an incorrect choice given an uncertainty repre-

sentation. Couclelis [19] addressed a more fundamental question as to how the uncertain

information is processed into knowledge. He identified three different forms of geospatial

knowledge production and highlighted the imperfections in each mode. Hunter and Good-

child [38] discussed the issues that need to be addressed to put the theory of uncertainty

visualization into practice.

Table 2.2

Potential heristics and their relevancy to the 8 tested visualizations [109].

Heuristic Source Relevance
(n/8)

Ensure visual variable has sufficient length Bertin and Ware 7
Preserve data to graphic dimensionality Tufte and Bertin 2
Put the most data in the least space Tufte 2
Provide multiple levels of detail Tufte and Ware 2
Remove the extraneous (ink) Tufte 4
Consider Gestalt Laws Ware 2
Integrate text wherever relevant Tufte and Ware 6
Don’t expect a reading order from color Bertin and Ware 1
Color perception varies with size of colored item Ware and Bertin 2
Local contrast affects color and gray perception Ware 2
Consider people with color blindness Ware 2
Preattentive benefits increase with field of view Bertin and Ware 3
Quantitative assessment requires position or size
variation

Bertin 4

2.2 Application Areas

In the context of this dissertation, we discuss two application areas which use ensem-

ble simulations that could benefit from improved uncertainty visualization techniques. We
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highlight some of the nuances and unique aspects of these fields and discuss some practical

issues that one must be aware of.

2.2.1 Uncertainty in Weather Simulations

Weather forecasting is imprecise as the simulation models just attempt to make nu-

merical approximations of the atmospheric processes. The output from these models is

sensitive to the initialization conditions, the resolution of the simulation, as well as the

choice of physics solvers. In addition, other aspects such as the type of simulation grid,

means of data storage, techniques to quantify uncertainty, visualization tools, and finally,

experience of the user affect the way uncertainty is perceived. Many of these sources

might be difficult if not impossible to eliminate and ensemble simulation offers one way

to minimize some of the simulation uncertainties.

While the nature and benefits of using ensemble simulations has been sufficiently high-

lighted, the following sub-sections discuss some of the other sources of uncertainty and

bottlenecks of technology affecting meteorological visualization. Whenever possible, the

problem is discussed in the context of ensembles.

2.2.1.1 Coordinate Systems

When implementing numerical weather prediction simulations, it is common for me-

teorologists to utilize a sigma, eta, theta, or hybrid vertical coordinate system for finite

differentiation [43]. Sigma coordinates (Figure 2.10) consider the ground level as the base.

This makes it a terrain following grid with any vertical point calculated as a ratio of the
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pressure difference from the point to the top and to the assumed base of the grid. Having

a pressure based grid offers computational advantages in solving the governing equations.

This is used in models such as the European Centre for Medium-Range Weather Forecasts

(ECMWF) [68]. The eta coordinate system (Figure 2.11) is also pressure based; however,

the base of the model is taken at mean sea level. The levels in an eta system are horizontal,

rendering the numerical formulation of the surface more complex. The theta coordinates

(Figure 2.12) uses potential temperature for its vertical coordinate based on the isentropic

nature of atmospheric flow. The theta coordinate system performs poorly at the planetary

boundary layer where the flow can be strongly non-adiabatic. Thus, hybrid coordinate

systems (Figure 2.13) are in use in models such as the Rapid Update Cycle – 2 (RUC–2)

[5] which uses the theta coordinate system in combination with a sigma coordinate system

to leverage the modeling advantages offered by each system.

Figure 2.10

The sigma coordinate system.
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Figure 2.11

The eta coordinate system.

Figure 2.12

The isentropic coordinate system.
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Figure 2.13

The hybrid coordinate system.

Additionally, simulation models often use a staggered simulation grid to minimize

aliasing artifacts in the computation. For example, the Weather Research and Forecasting

Model (WRF) [67] uses an Arakawa-C grid (Figure 2.14) [1]. This affects the way in

which the final output is obtained.

While these coordinate systems offer unique advantages in modeling, it makes the task

of visualization much more complex. Meteorologists almost exclusive utilize isobaric or

isentropic surfaces when analyzing vertical layers of the atmosphere, often combining

several such surfaces to render a mental 3-dimensional image of the physical processes

occurring at the given time.
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Figure 2.14

Example of variables on the Arakawa C grid.

2.2.1.2 Data Formats

There are a large number of geo-scientific data formats such as Grib 1 [91], Grib 2

[22], HDF [71], and NetCDF [78]. The data in a Grib file are stored as messages where

each message can be accessed to retrieve the data for a given level. One has to cycle

through a set of messages to obtain a 3D block of data. HDF and NetCDF formats have

been gaining popularity because of the open nature of the standard which allows one to

encode almost any kind of data. This comes at a cost of visualization tools being unable to

parse the data structures successfully for some files. Not much driver support is available

in terms of parallel and high performance access to data stored in these formats either. Li
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et al. [50] have initiated the development of a parallel version of the NetCDF format tuned

to High Performance Computing applications which is currently in progress.

Irrespective of the data format, variables are stored on the calculated pressure surfaces.

One must access the geopotential height values of the pressure grid to determine the exact

physical location for accurate 3D visualization. Often this is a double-redirection which

consumes long cpu cycles. In addition, different variables may be on different spatially

staggered grids.

Thus, data format issues complicate the process of visualization design. Adding an

ensemble dimension complicates the visualization issues even further as the visualization

tool must be able to determine the computational grid, associated grid staggering, and

appropriately visualize uncertainty. The pressure grids may not agree across model runs

and informed choice of a height grid must be made in 3D ensemble visualization.

2.2.1.3 User Training

Primarily due to training and habit, meteorologists typically use 2D slices and spaghetti

plots to understand their data. They go though years of training to attain the expertise to

mentally visualize the 3D and temporal nature of the atmosphere. Good user training

in 2D, 3D, and temporal visualization techniques with interactive analysis could enable

expert decision support.
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2.2.1.4 Ensemble Uncertainty Quantification

Metrics such as standard deviation, inter-quartile range, and confidence intervals are

often used to quantify the uncertainty in ensemble simulations. While ensemble forecast-

ing consumes significant computing resources by itself, additional CPU time is required

for uncertainty calculation. If there are a few ensemble members, bootstrapping [27] can

provide a robust approach to estimate uncertainty without being constrained by the re-

quirements of a normal distribution (see section 5.3.1.1). Calculation of the bootstrapped

distribution is computationally intensive; however, it is highly parallelizable and scalable.

2.2.1.5 Technological Gap

The scientific visualization literature provides an abundance of techniques to visualize

2D and 3D data [12, 26, 31, 36, 63]. Techniques such as isosurfacing [52], line-integral

convolution [16], and volume visualization [25] have found their way into tools such as

Paraview [90], Integrated Data Viewer [69], and VTK [84]. Many other techniques such

as multi-resolution [98] and multi-field [80] visualization, information visualization based

approaches [2, 92], and illustrative [42] rendering techniques have been developed. In

spite of the availability of these tools and techniques, operational meteorologists still use

spaghetti plots to visualize ensemble output, partly due to a technology gap between op-

erational requirements and tool capability. While these tools are capable of visualizing

weather data, they are not designed for ensemble visualization. These tools can load mul-

tiple co-located datasets, but these datasets are not treated as members of an ensemble.

As a result, these tools do not allow operational personnel to visualize ensemble mem-
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ber uncertainty. There is no complete tool suite available to meteorologists that has been

designed specifically for large ensemble data management and analysis. The only such

software that exists is a plugin made by Potter et al. [77] for the Climate Data Analysis

Tools [106].

2.2.2 Uncertainty in River-Flow and Inundation Simulations

Flooding is the number one cause of disaster and human peril in the United States,

contributing to 1,100 disasters which is nearly two-thirds of 1,720 Federal disasters de-

clared from 1953 to 2007 [70]. Thirteen National Weather Service’s (NWS) River Forecast

Centers (RFCs) provide daily river forecasts, flood warnings, flash flood guidance, and ex-

tended forecast information for water resources management with a mission to save lives

and decrease property damage and provide for the nation’s economic and environmental

well being.

There are three types of flooding scenarios, riverine flooding, coastal flooding, and

flooding in interconnected ponds. There are various influencing factors affecting the mod-

els used for each scenario. Riverine flooding is the most studied and best understood

scenario. Uncertainties in simulations of riverine areas stem from inaccurate terrain in-

formation (by far the largest contributor), hydrologic uncertainties in flood discharge, and

hydraulic uncertainties in converting to a flood-water surface level. Much like meteo-

rology, ensemble simulations of riverine flow attempt to capture some of the modeling

uncertainties.
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The Federal Emergency Management Agency’s (FEMA) Risk Analysis Division and

National Oceanographic and Atmospheric Administration’s (NOAA) Coastal Services Cen-

ter conducted a study to understand and evaluate the factors affecting flood map accuracy

to improve the mapping, communication, and data used [70]. They also studied the eco-

nomic impacts of inaccuracies for flooding across riverine, coastal, and ponded landscapes.

Flooding in areas of interconnected ponds (e.g. Florida) is the least understood scenario

and recommendations have been made for more research to better model, understand, and

predict for such areas. The following sub-sections highlight some of the findings that

affect uncertainty in flood modeling and mapping.

2.2.2.1 Accuracy of Topographic Data

The accuracy of topographic data was found to be the biggest contributor affecting the

accuracy of flood-plains. The United States Geological Survey (USGS) National Elevation

Dataset (NED) is typically used in floodmap production but the uncertainties in this dataset

are over 10 times the acceptable limit determined by FEMA. Lidar (light-detection and

ranging) datasets are the most accurate but are not available extensively. The differences

are highlighted in Figure 2.15 for for Beaufort County, NC, where the light blue areas

represent uncertainty in the extent of inundation at the 95% confidence level for the two

types of topographical data.

Additionally, problems also arise from differences in the datums in use: National

Geodetic Vertical Datum of 1929 (NGVD29), North American Vertical Datum (NAVD88)

of 1988 (Figure 2.16), and numerous tidal datums. An important component is bathymetry
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Figure 2.15

Flood plain extent with a 30m DEM (left) and 3m Lidar DEM (right) [70].

data. No technology exists for obtaining detailed and accurate measurements of bottom

surfaces of rivers and water bodies.

2.2.2.2 Structure Elevations

The presence of hydraulic structures such as bridges, culverts, and dams affect the

base water elevations before and after the structure. It is important to be able to capture

this information and model for it.

2.2.2.3 Inland Flooding

Inland flooding is the most studied and best understood type of flooding. There are

three main sources of uncertainty and each component introduces unique scientific chal-

lenges and scope of study. The three sources are:

• Hydrologic uncertainty in evaluating the base flood discharge

• Hydraulic uncertainty in simulation of the water surface elevation

• Mapping uncertainty of the floodplain boundary
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Figure 2.16

Differences in heights (NAVD 88 minus NGVD 29) in centimetres [70].

2.2.2.4 Coastal Flooding

Storm surge, tides, and waves are the greatest causes of coastal flooding. Lately,

there have been many improvements in coastal flood modeling. Future recommendations

to improve the models used in coastal flood mapping are directed towards using coupled

two-dimensional storm surge and wave models. It is worthwhile to note that coastal terrain

and bathymetry changes constantly and efforts must be made to keep the data current.
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CHAPTER 3

APPROACH AND TECHNIQUES

Our initial effort was to design a framework for the evaluation of uncertainty. We

first discuss this framework and its merits followed by discussions of various uncertainty

visualization techniques derived from the framework and applicable to 1D and 2D data.

3.1 Uncertainty Evaluation Framework

Visualization techniques are typically designed to operate on data of a certain dimen-

sionality. Sometimes the techniques can be extended to operate on data of higher or lower

dimensionality. For example, an isosurface is a 3D version of a 2D contour. We present an

Uncertainty Evaluation Framework that provides researchers with a structured classifica-

tion to evaluate existing uncertainty visualization techniques (Figure 3.1). The framework

was designed to consciously think of uncertainty from the perspective of the data being

visualized and not by the uncertainty visualization technique employed. This framework

also has the potential to provide a basis for development of new techniques and future

user-studies.

Spatial data can be thought of as having zero, one, two, or three dimensions. In many

applications, it is common to consider time as the outermost dimension. We decouple the

temporal dimension and treat it specially because the temporal dimension usually has very
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different features and resolution than the spatial dimensions, particularly in simulations.

It is worthwhile to note that this may not be true in the field of information visualization,

where it is very common to have multidimensional data that is not spatial or temporal

[103].

Further, scalars, vectors, and tensors can be thought of as three types of scientific visu-

alization paradigms. Thus, data dimensionality (0D, 1D, 2D, 3D), visualization paradigm

(scalar, vector, tensor), and the broad taxonomy of uncertainty visualization techniques

(blurring, transparency, noise, etc.) form the three axes that define our classification (Fig-

ure 3.1).

Figure 3.1

The Uncertainty Evaluation Framework.

Our framework allows one to replace the technique axis with other classification schemes

such as that of Pang et al. [74]. Additionally, the entire framework has a temporal axis.
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This is similar to the taxonomy proposed by Tory and Möller [97] but is more flexible,

since this framework allows researchers to structurally extend the technique axis across

other classification schemes and data dimensions.

3.2 Uncertainty Visualization Techniques

We explored various techniques for the visualization of uncertainty in the context of

the types of datasets used in the application domains for this dissertation. The following

sections describe these techniques in detail.

3.2.1 Glyphs Altered by Size

This representation alters the size of a round circular glyph depending on the uncer-

tainty in the data. The data itself is represented by a 1D plot or a 2D surface (Figure 3.2

and Figure 3.3).

Figure 3.2

Uncertainty represented by glyphs altered by size for 1D data.
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Figure 3.3

Uncertainty represented by glyphs altered by size for 2D data.

3.2.2 Glyphs Altered by Color

Altering the color of fixed sized circular glyphs is another method to represent the un-

certainty in the data. The data itself is represented by a 1D plot or a 2D surface (Figure 3.4

and Figure 3.5).

3.2.3 Color-Mapped Lines and Surface

The uncertainty value itself is mapped to the color of the line in the 1D case and

surface in the 2D case (Figure 3.6 and Figure 3.7).

3.2.4 Gradient and Striped Gradient

To improve the visual perception of the magnitude of uncertainty, we applied a gra-

dient to the uncertainty range about a data value resulting in a ribbon-like representation
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Figure 3.4

Uncertainty represented by glyphs altered by color for 1D data.

Figure 3.5

Uncertainty represented by glyphs altered by size for 2D data.
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Figure 3.6

Uncertainty represented by altering the line color for 1D data.

Figure 3.7

Uncertainty represented by altering the surface color for 2D data.
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in the 1D case (Figure 3.8) a vertical glyph representation in the 2D case (Figure 3.9).

We attempted to improve the representation by binning the uncertainty values and creat-

ing a striped gradient representation (Figure 3.10). We found these representations to be

difficult to read especially when the gradient of the data surface was steep.

Figure 3.8

Uncertainty represented by the color gradient for 1D data.

3.2.5 Errorbars

We experimented with the conventionally used errorbars for both 1D and 2D data

resulting in uncertainty representations on a 1D plot as well as a 2D surface (Figure 3.11

and Figure 3.12).

3.2.6 Boxplots

The next most logical representation to implement were box-plots. These plots are

more descriptive than simple glyph representations as the user can get a sense of the dis-
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Figure 3.9

Uncertainty represented by the color gradient on vertical glyphs for 2D data.

Figure 3.10

Use of striped gradient for 1D data.
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Figure 3.11

Uncertainty represented by errorbars for 1D data.

Figure 3.12

Uncertainty represented by errorbars for 2D data.

39



www.manaraa.com

tribution of the data values as well as statistics such as the minimum, maximum, quartiles,

and the median.

3.2.7 Graduated Uncertainty Glyphs

It is important to have some sense of the distribution of the individual data values.

We experimented with encoding individual data values on circular glyphs as well to create

what we call ‘graduated uncertainty glyphs’.

Figure 3.13

Construction of graduated uncertainty glyphs.

Mathematically, let u be the measure of uncertainty, s be the maximum desired size

of the glyphs, and Um be the maximum value of the uncertainty metric. The radius r of a

single glyph is given by

r =
su

Um

(3.1)

Let M be the mean of n data values v1, v2, v3, . . . , vn. Let the absolute difference of

each value vi from the mean M be di. Then, the differences for all data values is given by

d1, d2, d3, . . . , dn. These difference values are then sorted in increasing order to generate a

40



www.manaraa.com

Figure 3.14

Different types of graduated uncertainty glyphs.

new array D1, D2, D3, . . . , Dn, where D1 represents the smallest and Dn the largest of the

difference values.

The basic idea is to use these difference values to construct concentric circular glyphs,

starting with the largest difference value, Dn and rendering successively smaller glyphs

Dn−1, Dn−1, Dn−3, . . . , D1. This ensures that successively rendered glyphs are either

smaller-than or equal-to the size of the previously rendered glyphs (Figure 3.13).

Thus, equation (3.1) can be rewritten to give the radius ri of the ith glyph as

ri =
sDi

Dm

(3.2)

where Dm is the maximum difference of any data value to the mean for the given

variable in the entire data.
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Various levels of saturation of a color can be used to color these n concentric glyphs.

The saturation level sati for the ith glyph is given by

sati =
i− 1

n− 1
(3.3)

This results in a uniform distribution of the range of saturation values (0 . . . 1) over

the n data values. The largest glyph (derived from the largest difference value) ends up

having the least-saturated color, and each successive glyph gets a more saturated shade

of the color. This creates an overloaded visualization that encodes the distribution and

variability between the data values (Figure 3.14).

3.2.8 Uncertainty Ribbon

An uncertainty ribbon is generated to quantify the uncertainty along a contour of a

value for 2D datasets. The width of the ribbon represents the uncertainty along a contour.

Mathematically, let ui be the uncertainty measure at the ith location along a contour

for a given iso-value. The uncertainty measure ui can be used to derive the radius ri of a

hypothetical circle ci at that location, which is given by:

ri = w
ui

Um

(3.4)

where w is a user-chosen value that controls the maximum width of the ribbon, and

Um is the maximum value of the chosen uncertainty metric in the data.

A segment of the uncertainty ribbon can be constructed by first calculating the external

tangents, tia and tib, of circles, ci and ci+k, where k is a user-specified skip distance along
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the contour (Figure 3.15). Connecting the ends of the tangents tia and tib generates a

quadrilateral that forms a segment of the ribbon (Figure 3.15). This is repeated along the

contour to generate the complete ribbon. There is a possibility that adjacent circles lie

within one another, in which case the algorithm skips to the next non-inscribed circle.

Figure 3.15

Construction of uncertainty ribbon.

3.2.9 Graduated Uncertainty Ribbon

Similar in spirit to the graduated uncertainty glyphs, the ‘graduated uncertainty rib-

bon’ encodes the distribution of the data values. The construction of the graduated un-

certainty ribbon is similar to the graduated uncertainty glyphs. While the basic idea stays

the same, additional bookkeeping is necessary since consecutive locations are required for

calculating the tangents.

Let n be the number of data values at a given 2D location and let k be the number of

contour segments. Also, let di,j be the difference of the ith data value from the mean M
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for the jth location along the contour. The difference values at each location are sorted in

increasing order producing the array D1,j, D2,j, D3,j, . . . , Dn,k for all contour locations.

Once this is complete for all points along the contour, the algorithm must render mul-

tiple ribbons along the contour to give the graduated effect (Figure 3.16). This is ac-

complished by first rendering a wide ribbon for the largest difference values along the

contour. Thus, Dn,j for all j are used to generate the widest uncertainty ribbon. It is

also given the least saturated color. Successive ribbons are generated similarly from

Dn−1,j, Dn−2,j, Dn−3,j, . . . , D1,j for all j. The saturation, satj , of the color for the jth

ribbon is given by

satj =
j − 1

n− 1
(3.5)

The resulting visualization is a graduated uncertainty ribbon.

Figure 3.16

Construction of graduated uncertainty ribbon.
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3.2.10 Animation

We also experimented with animation of glyphs in the uncertainty range about the 1D

data plot (Figure 3.17) or 2D surface (Figure 3.17).

Figure 3.17

Uncertainty represented by animation of glyphs for 1D data.

We also tried to use animation of the plot or surface itself to communicate the un-

certainty (Figure 3.19 and Figure 3.20). These representations suffered severely from

occlusion and clutter.

3.2.11 Multivariate Uncertainty Glyphs

Often multiple variables are essential in data visualization. We used a star representa-

tion where each point of the star corresponded to a different variable to create a multivari-

ate visualization. A circle around the glyph demarcated the maximum value possible. The

saturation of the point encoded the uncertainty (Figure 3.21).
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Figure 3.18

Uncertainty represented by animation of glyphs for 2D data.

Figure 3.19

Uncertainty represented by animation of surface for 1D data.
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Figure 3.20

Uncertainty represented by animation of surface for 2D data.

Figure 3.21

A multivariate uncertainty glyph.

47



www.manaraa.com

We constructed a variation of these plots where each point sweeps out a section of a

pie as time progresses illustrating temporal multivariate uncertainty representation (Fig-

ure 3.22).

Figure 3.22

Temporal multivariate glyphs illustrating multivariate uncertainty.

3.2.12 Spaghetti Plots

We implemented spaghetti plots which are a common and conventional technique in

meteorology. These are created as a collection of iso-valued contours from the different

members in a 2D dataset.
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CHAPTER 4

QUANTITATIVE EVALUATION OF UNCERTAINTY VISUALIZATION

TECHNIQUES

Insight and quality assurance can be improved by recording uncertainty along with

data. The practical benefits of understanding uncertainty in a scientific process can be

manifold. A cursory glance at literature in almost all disciplines will indicate that visual

representations to depict the recorded or calculated uncertainties are underdeveloped. The

incidence of finding charts of one-dimensional data augmented with errorbars is reason-

ably high; however, as we move on to data of higher dimensions, visual metaphors to

represent the uncertainty are rarely used. Part of the reason is that although a variety of

techniques have been suggested, successfully applying them to make insightful visualiza-

tions is very challenging and there is a lack of guidance on which uncertainty method will

yield the best results. In this chapter, we present our findings from an uncertainty visual-

ization user study which we believe could help to improve future visualization designs.

A literature study indicated that some uncertainty visualization techniques seemed to

appear more effective than others, however, little comparison has been done to evaluate

the effectiveness of most of these techniques. Keeping this in mind, we constructed a

user study to evaluate the effectiveness of four commonly used uncertainty visualization

techniques:
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• Size of the uncertainty glyphs

• Color of the uncertainty glyphs

• Color of the data surface

• Errorbars

In this study, these techniques were applied to both one dimensional (1D) and two-

dimensional (2D) simulated datasets. We define 1D data as samples from a curve, which

is a 1D manifold embedded in a 2D Euclidean space. We define 2D data as samples from

a surface, which is a 2D manifold embedded in a 3D Euclidean space. Moreover, the

definition for our datasets is such that the 1D data is defined by a 1D function f(x), and

the 2D data defined by a function f(x, y). These definitions of 1D and 2D data in this

paper were chosen keeping applications of geoscience visualization and analysis in mind.

Our objective was to design a systematic and general user study to evaluate the effec-

tiveness of common uncertainty visualization techniques. We generated synthetic 1D and

2D datasets to avoid being tied to any specific application domain. We also chose common

tasks in scientific data analysis, such as searching and counting, to evaluate the techniques

chosen for our study. Our user study aims to bridge some of the gap in understanding

the circumstances that govern the decision making process in the presence of uncertain

information.

We borrowed design ideas from previous uncertainty visualization user studies [9, 32,

86, 105], as well as others, such as the 2D vector field visualization user-study by Laidlaw

et al. [45], and the hurricane visualization user study by Martin et al. [58]. The following
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section discusses the design of the study, followed by the data analysis and a discussion of

the results.

4.1 Study Design

This section discusses the data used, the uncertainty visualization techniques evalu-

ated, the questions asked, the participants, and various aspects of main study.

4.1.1 Data Generation

The data generation process was motivated by geoscience applications of visualiza-

tion, which typically deal with various types of remotely sensed data, observed data at sta-

tions (e.g., buoys), data over a trajectory (e.g., weather balloons), simulated weather data

(e.g., output from numerical models) and statistical studies (e.g., temporal correlations).

Our objective was to design a controlled synthetic-data generation scheme that would be

specific enough to provide immediate insight into geoscience uncertainty representation,

as well as be generic enough to potentially have other applications.

We devised a mathematical method to simulate the data acquisition process and hence

have complete control over the uncertainties introduced at different stages in a real data

collection process. We simulated the process of repeated data collection, where, if any

data measurement task is repeated a large number of times, the recorded values end up

being normally distributed. If we take a subset of these values, we can derive a mean data

value and a corresponding uncertainty value. We also introduced systematic uncertainty

components that are an inherent part of any data collection process.
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Matlab [95] was used to generate the datasets. We first describe the process for the

one-dimensional case and then extend it to two dimensions. We begin with a 1D array, say

A, consisting of 40 zeros and manually implant data features by setting consecutive index

locations in A to a certain value representative of the signal strength, say S, at that location

(dark regions in Figure 4.1). The value S was generated as a normally distributed random

number (using the Matlab randn function) with a mean of 0.8 and a standard deviation

of 0.2. Thus, we now have an array of zeros with user-defined data features embedded

in the array (Figure 4.1). Let this array be A′. In the next step, we interpolate the array

A′ (with the Matlab interp1 function using cubic spline interpolation) to implant 3 points

between every pair of array locations to generate 4 levels between them (Figure 4.1 and

Figure 4.2). Let us call this array Atrue. For our simulated dataset, Atrue will represent the

“truth value”, which is analogous to the exact value of a continuous real-life phenomena

such as the temperature of a place or water level of a sea surface that no instrument can

ever record “exactly”.

We then simulated the act of taking measurements or observations of the data. If a

measurement is taken a large number of times, the errors in the observations can also be

assumed to be normally distributed around the truth value assuming no systematic error,

which constitutes the random uncertainty component. To simulate random uncertainty

in our datasets, we generated 50 sets of readings, where every observation is normally

distributed about values of the assumed true data Atrue (Figure 4.2). Let these sets of

values be A0, A1, . . . , A49. To generate these, we first found the mean µtrue and standard

deviation σtrue of the true data Atrue. We used fractions and multiples of the standard
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Figure 4.1

Systemic and random components in the synthetic dataset.

Figure 4.2

Generation of data for the user-study.
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deviation σtrue, say k, to generate three types of datasets having three ranges of random

uncertainty in the data. Using the standard deviation of the truth data to generate multiple

uncertainty levels seemed like a reasonable choice. We used three values for k which were

0.5, 1.0 and 1.5.

For the dataset A0, the ith element of A0 corresponds to the ith element of Atrue modi-

fied by the generated uncertainty.

Thus,

A0,i = Atrue,i + randn() ∗ k ∗ σtrue (4.1)

We then took the first 10 observation sets, A0, A1, . . . , A9, and calculated the mean

and standard deviation for each index, generating the dataset A′′. This simulated the real-

life step of averaging multiple data readings, and the standard deviation represented the

uncertainty of the average.

An uncertainty study dataset is incomplete without a systematic uncertainty compo-

nent. In real-life situations, often the uncertainty in the data exhibits patterns. This can

be because of the nature of certain regions of the data, biases in the sensors, and a variety

of other reasons. We introduced systematic biases in the generated random uncertainty

by manually biasing certain sections of the array (Green regions in Figure 4.1). The bias

values, say B′, were normally distributed random values with a mean of 0.4 and stan-

dard deviation of 0.1 and were arbitrarily added or subtracted from the standard deviation

values in the chosen sections of the array. This generated our uncertainty features.
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The 1D datasets had four different feature layouts (Figure 4.1), each with three values

of k, making a total of twelve 1D datasets. We generated one extra dataset for use in the

training of the participants.

The same logic was extended to generate 2D datasets (Figure 4.1). We started with

a grid of 25×25 zeros and planted rectangular user-defined data features. The grid was

interpolated (using Matlab interp2 function) along both x and y axes to create 2 levels

between every 2 grid points. 50 sets of pseudo-readings were generated in exactly the

same way as that of the 1D case. We took the first 10 observation sets and generated the

average signal value, the uncertainty value, and added rectangular uncertainty features.

All parameters were kept the same as in the 1D case. Twelve 2D datasets were created for

the main study and an additional dataset was created for the training module.

We do acknowledge that using real data from real sources has its merits, most notably

being able to establish direct returns from the results of a user-study. We also acknowledge

that not all data is normally distributed. We did not perform any tests on any real data or

on other data distributions due to constraints of time.

4.1.2 Uncertainty Visualization Techniques Chosen for Evaluation

Using our uncertainty visualization framework, we chose four visualization techniques

that could be applied to both 1D and 2D data. These were scaled sizes of glyphs, alter-

ing the color attribute of glyphs keeping the size constant, color-mapping the data surface

with the uncertainty, and traditional errorbars (Figure 4.3 and Figure 4.4). The data was

displayed in greyscale except where colormapping of the surface was used. The 2D data
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surface was rendered with an orthographic projection to minimize 3D perspective effects

that may interfere with perception of height. This ensured that the uncertainty represen-

tations would be of uniform size regardless of the distance from the eye. A few other

techniques such as smooth and striped gradients, animation of glyphs, and animation of

the data surface were considered but were not included in the user study.

Figure 4.3

1D uncertainty visualizations in the user-study.

There were two considerations in removing some of our suggested techniques from

the final study, the first being the inherent merit of the technique and the second being

the number of questions it would add to the study. Smooth and striped gradients were the

first to be eliminated because they display incorrect uncertainty information across steep

slopes. In the 1D case, the uncertainty information in the gradient upon a steep slope aligns

itself with the slope, resulting in a thin ribbon. Forcing the ribbon to be always orthogonal

is not an elegant solution.

In the 2D case, the surface animation would either hide the data surface, or be itself

hidden by the data surface. We eliminated animation of glyphs also because of similar
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Figure 4.4

2D uncertainty visualizations in the user-study.

occlusion issues in the animation. To be consistent, when we had to eliminated a technique,

we eliminated it for both 1D and 2D datasets. We did not want to test a technique that

worked for say 1D and did not for the 2D case.

The second concern for us was user fatigue. We did not want to overwhelm the user

with too many questions of the same type, which could jeopardise the quality of our results.

The display area had a size of 800×800 pixels. The interpretation of visualizations

with the errorbars was straightforward [20]. Small bars (smallest being about 8 pixels

tall in 1D and about 3 pixels tall in 2D) represented low uncertainty while large bars

(largest being about 85 pixels tall in 1D and about 40 pixels tall in 2D) represented high

uncertainty. When scaled glyphs were used, large glyphs (largest being about 10×10

pixels in both 1D and 2D) represented high uncertainty and small glyphs (smallest being

about 3×3 pixels in both 1D and 2D) represented low uncertainty. We used flat shading

on the glyphs for the 1D dataset, however, we enabled lighting for the 2D dataset to give

users a sense of location of the glyphs. For altering the color attribute of glyphs as well as

57



www.manaraa.com

color-mapping of the surface, we mapped a low uncertainty value to a saturated shade of

blue and mapped a high uncertainty value to an unsaturated shade of blue. This is also the

scheme suggested by MacEachren [55] and Hengl [34]. The mapping is opposite to the

intuitive notion of high and low; however, here we are dealing with negatives, for example

“high uncertainty” implies low certainty.

Shades of blue were chosen to convey the uncertainty since blue is a cool color and

would cause minimum visual fatigue over the duration of the experiment. Red was used as

a preattentive cue to mark regions of interest and highlight user selections [103]. A legend

was always provided to aid the user.

4.1.3 Participant Pool

The participants of our user study were mostly graduates and under-graduates of Mis-

sissippi State University. We also had two senior participants who are researchers at the

university. We had a total of 36 participants, of which 3 participated in a trial run, 6 par-

ticipated in a pilot study, and the remaining 27 participated in the main study. Of the 36

participants, 27 were male and 9 were female. None of the participants reported color-

blindness while 17 reported 20/20 corrected vision. Most of the participants had some

understanding of statistics and used charts and graphs for their day-to-day activities al-

though none of these skills were set as prerequisites to participating in the study. Most

users typically spent more than 15 hours weekly using a computer. Each participant was

paid $10 for their time and participation.
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4.1.4 User-study tasks

Not much is known about how domain scientists perceive and use uncertainty. We con-

sulted Dr. Jamie Dyer, a meteorologist, to determine what might be a real world scenario

where uncertainty would be a part of his decision making process. He had temperature

data in mind and indicated that he would be interested in looking at regions of extreme

(high or low) uncertainty. He also wanted to be able to discern features in the data, in the

presence of uncertainty. Keeping this in mind, we designed two types of tasks: search-

ing tasks and counting tasks. The searching tasks primarily explored the perception of

random uncertainty while the counting tasks explored the perception of systematic uncer-

tainty, along with the cognizance of the underlying data. Dr. Dyer mentioned that he liked

to look at the entire data and then focus on a region of interest. The searching and counting

tasks were designed to simulate such an exploratory navigation of the data.

4.1.4.1 Search tasks

The search tasks involved searching for locations of high or low uncertainty from

within an area marked in red (Figure 4.5). The entire dataset was always shown to the

user. This was done keeping real-life data exploration tasks in mind. Any spot within

the marked region could be selected by the user and the corresponding data/uncertainty

values would be interpolated whenever necessary. This design decision was made keeping

data collection in geosciences in mind, where we take samples at specific locations over a

domain and then interpolate if we need values in between. In this document, the searching
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for locations of high uncertainty task is labelled Search High Uncertainty (SHU) and the

searching for locations of low uncertainty task is labelled Search Low Uncertainty (SLU).

We expected users to perform similarly in both the search tasks, however, our results

indicate that there was a significant difference as discussed in our results section. These

tasks had more than one correct answer. A user response was considered correct if the

chosen location had an uncertainty value within the top 10th percentile of the entire range

of uncertainty for a task requiring the user to find the location of highest uncertainty,

or the bottom 10th percentile for a task requiring the user to find the location of lowest

uncertainty. We had also tested with the 5th percentile but felt that it made the tasks too

difficult to perform reasonably. The 10th percentile seemed to be a reasonable balance

between making the user study impossibly difficult and too easy. Although we did not

perform a formal test, we expect the results to remain the same empirically.

Location and proximity of high and low uncertainty areas had an effect on the cor-

rectness of the user responses. If a region of interest included both a high and a low

uncertainty feature, the range of uncertainty values was much larger than had there been

just one uncertainty feature or no uncertainty feature. As a result the number of correct

answers changed on a case by case basis. Locating a spot of high or low uncertainty was

thereby facilitated, however; a correct answer was not guaranteed by choosing just any

location within a feature. There were variations within the feature too, and a user had to

make an informed decision as opposed to a blind selection within an approximate region.

To control arbitrary effects, we designed the regions of interest to uniformly include high,

low, both and none of the uncertainty features.
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4.1.4.2 Counting tasks

The counting tasks involved counting either data features or counting uncertainty fea-

tures within an area marked in red (Figure 4.6). The definition of a data-feature in our

study is the presence of any “peak” in the data. Artifacts resulting from the introduction of

systematic uncertainty were called uncertainty features in this study, which manifest as re-

gions of extreme glyph-size, glyph-color, errorbar size or surface-color. In this document,

the counting of data features task is labelled Count Data Features (CDF) and the counting

of uncertainty features task is labelled Count Uncertainty Features (CUF).

One might argue against the merit of having a counting task for data features in an

uncertainty visualization experiment. We contend that it is generally important for a user

to be always aware of the data and the counting tasks would evaluate the effectiveness of

the techniques in retaining a sense of the data.

4.1.5 Interface Design

For the search questions, the interface provided one slider for the 1D data and two

sliders for the 2D data to navigate a small red highlight to the chosen answer location

(Figure 4.6). Clicking the sliders displayed cross-hair guides to ease the navigation. We

were time constrained to implement direct object picking in our interface. We eventually

found that users were very comfortable using this interaction metaphor and could reach

the desired screen location with at most 2-3 movements of the sliders.

For the counting questions, radio buttons with four static answer choices of 0, 1, 2 and

3 were provided (Figure 4.6). In these questions, the sliders were hidden and four radio
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Figure 4.5

User interface for questions requiring a count of features.
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button options placed vertically were displayed. Other layouts for the radio buttons were

not experimented. Users were expected to make a selection from one of the four radio-

button choices. The regions of interest were designed in such a way as to never exceed

three data or uncertainty features, and were uniformly designed to include all possibilities.

We feel that having a fixed set of choices makes the quality of responses better than having

users enter a numeric digit on a prompt. This also ensures a consistent response structure

across the methods.

Figure 4.6

User interface for questions requiring a search task.
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Users could not skip a question. They clicked an “Accept” button to record their an-

swer and response time, and only then could they click a “Next” button to go to the next

question. A break of 5 minutes was given after every 30 questions.

A trial run identified weaknesses with our initial design. Of the three participants in

the trial run, two had prior experience designing user studies and their debriefing proved

helpful in improving the design. Most notably, the rotation of the 2D surface along the z-

axis was fixed to 30 degrees from the original 45 degrees to alleviate some of the artifacts

resulting from the view-aligned overlap of errorbars and glyphs. Additionally, the range

of the sliders was adjusted to restrict the navigation of the highlight to within the marked

region. Users were not allowed to rotate the view or zoom in.

4.1.6 Participant Training

We typically spent about 15 to 20 minutes to brief the participant about the user study.

This involved getting their informed consent and completing a general questionnaire, fol-

lowed by an explanation of the tasks expected of them. Users were then assigned a com-

puter which ran a training module which was a variation of the software used in the actual

study. It familiarized users with the interface and posed 8 questions, one of each type, on

the two training datasets. The software highlighted the correct answers to the users to give

them feedback on their performance. No person was involved in this process. We felt that

users were confident to take on the main user-study after this exercise.
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4.1.7 Identifying free parameters

A pilot study was conducted to identify the free parameters in our user-study. These

were the size of errorbars and the size of the glyphs. We had 6 participants but we could

use data from only 4 of the participants. The quality of the answers from the other 2 was

unacceptable because, primarily, they seemed unmotivated and finished too soon. Also,

the correctness of their responses was about 50% lower than the others. For this pilot-

study, we used three sizes of errorbars and glyphs to compare small, medium, and large

representations. The largest of the glyphs was limited to not exceed the size of the grid-

cell.

Each participant was asked 144 questions in random order. Although it is difficult to

draw meaningful inferences from data from just 4 users, we did find trends that helped us

make reasonable assumptions. Users found it easiest to use the smallest errorbars in both

1D and 2D and so we chose to use errorbars of the smallest dimensions in the main study.

For glyph colormapping of the 1D data, users found it easiest to use glyphs that had the

largest size among the three evaluated sizes. For the 2D data, the three glyph sizes used

for glyph color-mapping did not show such a clear trend but had the minimum variance in

accuracy of responses for the largest size. So we chose the largest size of the glyphs for

use in the main study.

Unlike color-mapping, we did not observe any trends in the responses for the small,

medium, and large size ranges used with the glyph-size technique. We attribute it to the

inherent nature of the mapping of uncertainty values to size of glyphs making it difficult
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to find a separation between the three maximum sizes. So, for this technique, we resorted

to using the size we chose for glyph color-mapping.

4.1.8 The Main Study

We had 27 participants in the main study, each answering 96 questions of which 48

questions were on the 1D datasets and the remaining 48 on the 2D datasets. Each set of 48

questions consisted of three sets of 16 questions, each based on data generated using one

of the three k values (0.5, 1.0 and 1.5). The 16 questions asked formed a complete 4×4

design of the four visualization techniques explored and the four user-tasks chosen. The

response time in milliseconds was recorded for each question. Each user was presented a

different shuffled order of questions. The four questions asked were:

• How many data features are present in the marked area?

• How many uncertainty features are present in the marked area?

• Identify the spot of least uncertainty in the marked area.

• Identify the spot of most uncertainty in the marked area.

4.2 Analysis

Every correct answer was given a score of 1 and every incorrect answer was given a

score of 0. Since there were three questions for a given visualization technique per user

task, a participant could achieve a maximum score of 3 for the task, given a visualization

technique. Score summaries were created separately for the 1D and 2D datasets.

For each dataset, a 4×4 full factorial ANOVA was computed to assess the differ-

ences in performances for different questions and different techniques [61]. The summary
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Figure 4.7

Summary of results from the user study.

ANOVA table indicated a significant interaction between type of tasks and techniques

used (F (9, 416) = 9.968, p < .0001) for the 1D dataset. For the 2D dataset, the summary

ANOVA table also indicated a significant interaction between type of tasks and techniques

used (F (9, 416) = 7.818, p < .0001). This implied that whether there was a significant

difference between techniques or not, depended on the type of tasks assigned to the sub-

jects, for both the datasets. Thus, to further explore the results, 8 one-way ANOVAs were

computed to capture the Simple Main Effects for each dataset.

The first 4 one-way ANOVAs were intended to see if there were any statistically signif-

icant differences between the 4 techniques used with respect to the user tasks. All possible

pairwise comparisons were made (6 pairwise comparisons) between the techniques to see

if any technique was visibly superior to the rest by creating contrast coefficients to test

for the significance of each comparison. The alpha level was set at 0.0083 as compared

to widely accepted 0.05 after using Bonferroni’s correction (α/c; where c is the number
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of comparisons) to control for Type I error. Also, the t-test value which does not assume

equality of variances was reported for each comparison since the data indicated slight vi-

olation of homogeneity of variances. This was computed for the 4 task types, viz. Search

Low Uncertainty Locations (SLU), Search High Uncertainty Locations (SHU), Count Un-

certainty Features (CUF) and Count Data Features (CDF). The specific findings are listed

in Table 4.1. We only report the statistically significant results.

The next 4 ANOVAs were intended to see if there were any statistically significant

differences between the 4 user tasks with respect to the visualization techniques used, viz,

Glyph-size, Glyph-color, Surface-color and Errorbars. The specific findings are listed in

Table 4.2.

We ran our core statistical methods (4×4 full factorial ANOVA) on the obtained scores,

from which we identified significantly better performing techniques and tasks. Similar

ANOVAs could be based on the analysis of time, however, that would have inordinately

complicated the reporting in the time and space available to us which is why we chose

graphical techniques to illustrate the time performance (Figure 4.7, Figure 4.8, and Fig-

ure 4.9). Also, we were more interested in the accuracy assessment than the time perfor-

mance in our research goal.

4.3 Results and Discussion

We found a consistent trend in the accuracy of responses and the response time for

questions on the 1D and 2D datasets (Figure 4.7, Figure 4.8, and Figure 4.9). Since we

found a statistically significant interaction between the techniques used and the user-tasks,
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Figure 4.8

User study results for the 1D case.

Figure 4.9

User study results for the 2D case.
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inferences about a general order of performance of the techniques could not be found,

however, we did find several interesting discoveries that we think are useful for uncer-

tainty visualization design. In both cases, Errorbars performed significantly worse than

the other techniques studied even though it took substantially more time to answer these

questions. One possible explanation of the difference between the errorbars and glyphs

is the difference in area between the two representations. We had tested with different

errorbar sizes and glyph sizes only in our pilot study from which we determined the most

effective size to use in the main study. It would be interesting to test with other shapes of

glyph as well.

Visualization researchers agree that the choice of a visualization technique is heavily

context dependent. All the visualizations in the study have the same data-density. So, they

are fair in the sense that all the techniques were being compared vis-à-vis the same con-

ditions. It is also possible that the data density played a role in perception leading to the

poor performance of errorbars. This may be taken as a valuable lesson in designing visual-

izations for both 1D and 2D cases, which have data-densities comparable to our datasets.

However, we do not have sufficient anecdotal evidence that might help us understand this.

The first sets of pairwise comparisons were between the different uncertainty visual-

ization techniques for different user tasks. For the 1D tasks (Table 4.1), users performed

significantly better using Glyph-size when the task was to search for locations of least un-

certainty. However, both Glyph-color and Surface-color performed better than Glyph-size

when the task was to search for locations of high uncertainty. We did not expect to find

a significant difference between the two search tasks since both the tasks were designed
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Table 4.1

ANOVA results for pairwise comparison on techniques.

Data
Dim

Task t-values (df) Significantly
better

Significantly
worse

1D

Search for location of low
uncertainty (SLU)
F (3, 104) = 16.176, p < .0001

Glyph size∗∗ Glyph color
Glyph size∗∗ Surface color
Glyph size∗ Error bars
Error bars∗ Surface color

Search for location of high
uncertainty (SHU)
F (3, 104) = 13.874, p < .0001

Glyph color∗∗ Glyph size
Glyph color∗∗ Error bars
Surface color∗ Glyph size
Surface color∗ Error bars

Count uncertainty features (CUF) No significant difference
Count data features (CDF) No significant difference

2D

Search for location of low
uncertainty (SLU)
F (3, 104) = 6.775, p < .0001

Surface color∗ Glyph size
Surface color∗ Glyph color
Surface color∗ Error bars

Search for location of high
uncertainty (SHU)
F (3, 104) = 48.144, p < .0001

Surface color∗ Glyph size
Surface color∗∗ Error bars
Glyph size∗∗ Error bars
Glyph color∗∗ Error bars

Count uncertainty features (CUF)
F (3, 104) = 7.534, p < .0001

Surface color∗ Glyph size
Surface color∗ Glyph color
Surface color∗ Error bars

Count data features (CDF)
F (3, 104) = 25.910, p < .0001

Glyph size∗ Glyph color
Glyph size∗∗ Surface color
Glyph size∗ Error bars
Glyph color∗∗ Surface color
Error bars∗∗ Surface color

∗p < .0083 Count data features (CDF)
∗∗p < .0001 Count uncertainty features (CUF)

Search for locations of high uncertainty (SHU)
Search for locations of low uncertainty (SLU)
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to find extremes in the data. This leads us to believe that human perception of uncer-

tainty ranges using Glyph-size, Glyph-color and Surface-color may not be uniform. Our

mapping between visual features and uncertainty was linear. One explanation is that the

uncertainty was not translated linearly to the visual features and hence the difference in

performance between the two search tasks.

For the 2D tasks (Table 4.1), Surface-coloring performed reasonably well for all ques-

tions except counting of uncertainty features. Since shape of the surface was the pri-

mary visual cue for data features, we feel that color-mapping of the data surface with

uncertainty reduces some of the strength of the shape information. Hence, we see that all

other techniques outperform Surface-color for the counting of data features task. On the

whole it might sound encouraging to use Surface-coloring to represent uncertainty. While

this may work well, one must be aware that it reduces a user’s awareness of the actual

data. Glyph-size and Glyph-color performed somewhat better than Error-bars although

they were worse than Surface-color which bolsters the argument for using one of them as

a reasonable trade-off.

The second sets of comparisons were between the tasks for different uncertainty visu-

alization techniques (Table 4.2). For the 1D techniques, Searching for Low Uncertainty

(SLU) was clearly the easiest task to perform when the technique was Glyph-size. How-

ever, Searching for High Uncertainty (SHU) task was significantly easier when the tech-

nique was Glyph-color. Interestingly, for the 2D data, Searching for High Uncertainty

(SHU) was consistently easier than Searching for Low Uncertainty (SLU) for all tech-
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niques except for Errorbars, where Searching for Low Uncertainty (SLU) was significantly

easier.

We found that Counting Data Features (CDF) was generally more accurate except for

the 2D case when surface-coloring was used.

On the whole, we found that it took consistently longer for users to respond to ques-

tions on the 2D datasets than to questions on the 1D datasets. The accuracy of responses

was also higher for the 1D dataset (Figure 4.7). This is not surprising because 2D tasks

are generally more difficult than 1D tasks.

Our uncertainty visualization user study brings to light several interesting observations.

One such result is that user efficiency in the two search tasks that are opposite of one

another (locations of high uncertainty vs. locations of low uncertainty) are significantly

different. This is contrary to common understanding and may be attributed to a non-linear

perception of the mapping between uncertainty and the visual metaphor. This may drive

us to find techniques that compensate for our perceptive biases, or design techniques that

are unbiased. One such technique is the Linearized Optimal Color Scale introduced by

Levkowitz and Herman [48].

Another aspect that merits discussion is the cognitive associability of high uncertainty

with faint colors. The term high uncertainty also associates well with large glyph-sizes.

We experimented by reframing our questions and the legend with terms like “high cer-

tainty” and “least uncertainty”, and eventually stuck with “high uncertainty” and “low

uncertainty” as it seemed to facilitate the cognitive mapping.
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We feel that some of our results should force us to think again about the techniques

we use on a daily basis. Our study questions the effectiveness of the almost universally

used errorbars in data visualization. Although the density of errorbars was higher than

for “standard” data graphics, where the x-axis is divided into a relatively small number of

categories; there are applications where errorbars are used with the density as evaluated in

the user-study. Alternative methods may be suitable in many cases.

4.4 Conclusion

While we were unable to find clear winners, we were still able to identify scenar-

ios where the effectiveness of certain types of uncertainty visualization results in better

visualizations. It is worthwhile to note that errorbars were consistently poor performers.

1D tasks were generally easier than 2D tasks although the 2D tasks took longer to finish.

The effectiveness of glyph-sizes and glyph-colors was found to be reasonable. Perhaps

the most significant realization is that the effectiveness of an uncertainty visualization

technique depended on the task being performed. These results could help scientists in

visualizing their data.

The design of the Uncertainty Evaluation Framework and the technique to generate

synthetic data with uncertainty are also notable contributions.
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Table 4.2

ANOVA results for pairwise comparison on tasks.

Data
Dim

Technique t-values (df) Significantly
better

Significantly
worse

1D

Glyph size
F (3, 104) = 13.499, p < .0001

SLU∗∗ SHU
SLU∗∗ CUF
CDF∗∗ SHU

Glyph color
F (3, 104) = 6.880, p < .0001

SHU∗ SLU
CDF∗∗ SLU
CDF∗ CUF

Surface color
F (3, 104) = 17.295, p < .0001

SHU∗∗ SLU
CDF∗∗ SLU
CDF∗ CUF

Error bars
F (3, 104) = 11.587, p < .0001

CDF∗∗ SHU
CDF∗∗ CUF
CDF∗ CUF

2D

Glyph size
F (3, 104) = 16.721, p < .0001

SHU∗∗ SLU
SLU∗∗ CUF
CDF∗ SHU
CDF∗∗ SLU
CDF∗∗ CUF

Glyph color
F (3, 104) = 11.780, p < .0001

SHU∗∗ SLU
SLU∗ CUF
CDF∗∗ SLU

Surface color
F (3, 104) = 36.356, p < .0001

SHU∗ SLU
SHU∗∗ CDF
CUF∗ CDF
CUF∗ SLU
SLU∗∗ CDF

Error bars
F (3, 104) = 14.067, p < .0001

SLU∗∗ SHU
CUF∗∗ SHU
CDF∗∗ SHU

∗p < .0083 Count data features (CDF)
∗∗p < .0001 Count uncertainty features (CUF)

Search for locations of high uncertainty (SHU)
Search for locations of low uncertainty (SLU)
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CHAPTER 5

SOFTWARE PROTOTYPE FOR WEATHER ENSEMBLES

In this chapter, we discusses the design, development, and subsequent use of a software

prototype named Noodles that has been developed collaboratively between meteorologists

and visualization researchers. We discuss the iterative software development paradigm

employed that has led to two iterations of the tool. Noodles, and subsequently Noodles

2 has been designed to employ uncertainty visualization techniques to meteorological en-

semble simulation output to aid experts in their analysis. Meteorologists Dr. Andrew Mer-

cer and Dr. Jamie Dyer provided expert advice and feedback during the development and

subsequent analysis of multiple ensemble datasets using the tool. The technical features

presented here are an improvement over what is used by operational meteorologists and

could help in improving weather forecasts.

5.1 Ensemble Weather Forecasting

Predicting the weather is inexact and computationally expensive. The most common

method for weather prediction is through dynamic modeling, in which simulations recre-

ate or predict the conditions of the atmosphere for a period of time. In an effort to reduce

errors from individual model simulations, multiple runs of the dynamic model with differ-

ent initial conditions are used to create an ensemble. Scientists use the average ensemble
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output as a forecast and utilize spaghetti plots to analyze the spread of the ensemble mem-

bers and describe their uncertainty. Individual ensemble members are usually initialized

with slightly perturbed initial conditions or with different parametrizations, or sometimes

both.

Generating a forecast ensemble is computationally intensive. The advent of large-

scale supercomputers has helped the ensemble generation process as the combined power

of multiple processors can be used to address some of the computational issues. Addi-

tionally, supercomputing has allowed for the manipulation of larger datasets, leading to

increased ensemble sizes. In most cases, entire datasets cannot be loaded into memory.

As a result, common analysis tools often lose their interactivity. Augmenting these tools

to produce uncertainty visualization slows them down further. While analysis tools are of-

ten used in research settings, operational meteorologists almost always use spaghetti plots

[23], which are generated by combining single mid-tropospheric contours from various

ensemble members for typical 500 mb pressure surface height values (i.e. 5400 m, 5700

m). Such an approach restricts the amount of data available to a forecaster while making

a prediction. Effective manipulation and uncertainty visualization techniques could help

to emphasize the uniqueness of a situation by conveying the contribution of uncertainty,

allowing the forecaster to make a more informed prediction.

It is important to note the difference between forecast accuracy and precision. Numer-

ous forecast accuracy studies have been conducted, e.g. [46, 59], and no unifying forecast

verification statistic has been devised. Instead, ensemble forecasts were introduced as a

means of removing forecast errors resulting from initial conditions or model parametriza-
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tions. Biases in the model forecast will remain, so an ensemble forecast with little member

spread may still have poor forecast accuracy. The scope of this study is analysis of ensem-

ble member uncertainty, not forecast accuracy. We did not undertake a comparison of

observed and predicted weather conditions.

We used the Weather Research and Forecasting Model (WRF) [67] to run our mete-

orological simulation ensembles. WRF simulations require three steps: pre-processing,

running the model with the chosen parametrizations, and then post-processing the output.

For the purpose of this study, we used different parametrizations of cumulus and micro-

physics schemes to create our ensembles. Specific simulations are described in detail as

case studies in the following sections.

5.2 Software Engineering Effort

We conducted an initial meeting between two meteorologists and two visualization

designers to identify scenarios where uncertainty visualization would be useful. The visu-

alization designers were made aware of some of the common approaches that meteorolo-

gists use in data analysis. We agreed that understanding uncertainty in weather ensembles

was challenging and that there were many aspects in 2D visualization that could benefit

from a better representation. We decided that the initial focus would be on 2D visual-

ization since forecast meteorologists typically rely on 2D slices of the atmosphere when

making weather predictions. Additionally, the 2D framework would provide a baseline for

a more complex 3D analysis in the future.
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With a focus on these goals, we initially developed a prototype of a tool named Noodles

[82]. Feedback from the meteorologists was used to redesign the tool to incorporate many

of the features deemed essential by them to create the current iteration of the tool named

Noodles 2. We followed a spiral development model where an initial prototype is refined

through user evaluation and feedback.

5.3 Initial Prototype: Noodles

Noodles was implemented in the open source version of Qt 4.5. The user interface

for the tool has four sections (Figure 5.1). The first section is the display widget which

uses OpenGL rendering for geographic visualization (boxed in red and labeled ‘1’ in Fig-

ure 5.1). We used the shapelib library [104] to read in shapefiles of continents and the

countries of North America which were then rendered with thick outlines to indicate in-

ternational borders. Shapefiles of individual states within the countries are also displayed

with thinner outlines for better geographic context. An Equirectangular projection (which

is a simple mapping of the latitude and longitude to a Cartesian grid) was used for the visu-

alization. The ensemble data were on a Lambert Conformal Projection and were rendered

in the Equirectangular Projection.

The second section (boxed in blue and labeled ‘2’ in Figure 5.1) contains the data

control widgets placed under the primary display area. The variable selection combo-

box, height selection combo-box, the timeline slider, and the isovalue selection box allow

the user control over the data being displayed. An ‘animate’ checkbox allows a time-
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loop animation of the data. A status bar provides additional information about the current

dataset.

The third section (boxed in green and labeled ‘3’ in Figure 5.1) is to the right of the

first display area. This section has widgets that enable or disable the various uncertainty

visualizations built into the tool.

The transect plot comprises the fourth display area (boxed in pink and labeled ‘4’ in

Figure 5.1). The user may optionally enable a data-transect that displays the distribution

of the values of the current variable along a straight transect line through the data. The

tool has been designed to ensure coordinated views and updates. Changes to one section

updates dependant members in other sections to maintain visualization context.

5.3.1 Uncertainty Metrics

One of the most important stages of the uncertainty visualization pipeline [74] is

the meaningful quantification of uncertainty. We calculated the ensemble mean, standard

deviation (SD), inter-quartile range (IQR), and the 95% confidence intervals (CI) for the

ensemble at each grid point. However, these statistics require data that follow a normal

distribution to be interpreted properly. It is evident from a sample grid point of perturbation

pressure (Figure 5.2) that the ensemble members do not follow a normal distribution, but

instead have an unknown distribution that is likely non-normal. To remove the normality

constraint, we employed an ensemble mean bootstrap.
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Figure 5.2

Histogram of ensemble means for 8 values.

Figure 5.3

Histogram of the bootstrap bootstrap means from Figure 5.2.
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5.3.1.1 Bootstrapping

Bootstrapping [27] is a statistical method that falls in the general class of resampling

statistics typically used to generate an approximating distribution with no assumptions

on the type of the source distribution. The ensemble members constitute an independent

and identical distribution since they were formulated using the same numerical model

with independent initial conditions, thereby satisfying the prerequisites for applying the

bootstrap procedure. We formulated the bootstrap means using 1000 random samples of

the ensemble members which, by the central limit theorem, are a normally distributed

approximation of the true distribution of the ensemble mean. Both the mean and median

of these bootstrap replicates (Figure 5.3) are a better representation of the center of the

unknown distribution than the sample mean from the ensemble members (Figure 5.2) due

to the skewed distribution of the original members. Often this is a small difference (e.g.

for the example in Figure 5.2 and Figure 5.3, the sample mean was 2098.06 Pa while

the bootstrap mean was 2099.66 Pa), but the issue of distribution is especially important

with certain non-normally distributed meteorological parameters (e.g., water vapor mixing

ratio, precipitation, etc.) As a result, it is essential that both methods are included for

completeness. Likewise, the width of the bootstrap 95% confidence interval and the inter-

quartile range of the bootstrap means yielded uncertainty measures not constrained by a

requirement of normality and are easily derived from the bootstrap mean distribution.
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5.3.2 Uncertainty Visualization

Uncertainty glyphs, graduated uncertainty glyphs, uncertainty ribbon, graduated un-

certainty ribbon, and spaghetti plots were available to users of the tool for uncertainty

visualization. The visualization itself was done on a Sun Ultra 27 workstation that ran

Suse Linux Enterprise Server 10. It had four 3.2 GHz dual-core Intel Xeon processors

with 6 gigabytes of memory and an NVIDIA Quadro FX3800 graphics card.

5.3.2.1 Uncertainty Glyphs and Graduated Uncertainty Glyphs

We explored the applicability of circular glyphs scaled in size as one of the uncertainty

visualization techniques in the tool. We [81] identified that glyphs altered by size were an

effective method to depict uncertainty in 2D datasets. Uncertainty measures of standard-

deviation, IQR, and the width of the 95% CI were mapped to the radii of circular glyphs to

convey the uncertainty. The user could choose to display these glyphs over the entire grid

(Figure 5.4 and Figure 5.5), or along the contour of a value of the ensemble mean or the

bootstrap mean (Figure 5.6 and Figure 5.7). The maximum possible size of the glyphs was

based on the coarseness of the glyph-spacing such that overlap between adjacent glyphs is

minimized.

We also explored the applicability of graduated uncertainty glyphs in the tool. Recall

that the basic idea is to use the difference values of ensemble members to the mean to

construct concentric circular glyphs (section 3.2.7), starting with the largest difference

value, Dn and rendering successively smaller glyphs Dn−1, Dn−2, Dn−3, . . . , D1. This

ensures that successively rendered glyphs are either smaller-than or equal-to the size of
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the previously rendered glyphs (Figure 3.13). Using a range of saturation values (0 . . . 1)

over the n ensemble members, the largest glyph (derived from the largest difference value)

ends up having the least-saturated blue, and each successive glyph gets a more saturated

shade of blue.

The above process was used to generate glyphs for the whole grid, or along the mean

contour. A glyph having a dense and saturated core with a faint periphery indicates that

ensemble members mostly agree and have a few outliers. On the other hand, a mostly blue

glyph indicates that there are large differences among the members. The overall size of

the glyphs across locations indicates the variability of each location with respect to other

locations on the grid (Figure 3.14).

Figure 5.4

Glyphs illustrating 95% CI of the values.
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Figure 5.5

Graduated glyphs aligned over the whole grid.

Figure 5.6

Graduated glyphs along the mean perturbation pressure.
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Figure 5.7

Three time-steps illustrating spaghetti plots, graduated glyphs, and colormap.

5.3.2.2 Uncertainty Ribbon and Graduated Uncertainty Ribbon

We generated an uncertainty ribbon to quantify the uncertainty along a contour of a

value from the ensemble mean or the bootstrap mean (Figure 5.8 and Figure 5.9). The

width of the ribbon represented the uncertainty along the contour. Recall that an uncer-

tainty ribbon is generated by connecting external tangents of hypothetical circles along a

contour (section 3.2.8). In Noodles, the calculation and rendering of the contours was done

using the popular ‘conrec’ routine [11] which outputs contour fragments for a given iso-

value. These fragments were converted into connected segments by routines derived from

a COCOA implementation of conrec [30]. Uncertainty values could be easily extracted

along the generated contour by using the contour fragment location to lookup uncertainty

values from the underlying 2D grid.

The tool also supports the rendering of a graduated uncertainty ribbon by overlaying

multiple uncertainty ribbons for the number of ensemble members (Refer section 3.2.9).
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Figure 5.8

Illustration of uncertainty ribbon mapping the IQR.

Figure 5.9

Illustration of a graduated uncertainty ribbon.
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Figure 5.10

The 3×6 color scheme from ColorBrewer [33].

5.3.2.3 Spaghetti Plots

Spaghetti plots are not a new technique, however we still implemented them in Noo-

dles for the sake of completeness. They also served as a reference visualization that me-

teorologists were accustomed to. However, the color encoding for the spaghetti plots

employed here is a new application in meteorology.

ColorBrewer [33] is an online tool used to generate colormaps for cartographic visual-

ization. Categorical colors for individual contours in the spaghetti plot (and corresponding

members in the data-transect discussed later) could not be obtained from ColorBrewer

because it has an upper limit of 12 classes for qualitative categorical data while the ensem-

ble had 18 members in the particular case study. Sufficient visual separation between the

members cannot be guaranteed for such a large number of categories and so an alterna-

tive was designed. Since there were three cumulus parameterizations and six microphysics

schemes in the ensemble in the case study, we chose three sequential color schemes, BuPu,

GnBu, and YlOrBr from ColorBrewer to map to the cumulus schemes, and used a six
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level sequentially graduated hue within each color scheme to map to the six microphysics

schemes (Figure 5.10). The color legend also had a 3 × 6 layout. We plotted the ensemble

mean with a thick red line to take advantage of its preattentive properties [103]. We plotted

the bootstrap mean with a thick white line. It was our experience that using black for the

background color allowed the most visual contrast amongst the plots.

5.3.3 Additional Features

Various additional features in the tool are as follows.

5.3.3.1 Data-Transect Plot

Meteorologists often look at the distribution of values along transects. To facilitate

such use, we designed a data transect plot using the chart widget library Qwt (Figure 5.1).

Upon enabling the data-transect checkbox, a purple horizontal line with handles at both

ends appears on the main display. The plot on the right side of the window displays the

values of all ensemble members along the line. The user can click any of the handles

and move the transect, which automatically updates the plot. The scale on the plot can

be locked to a predetermined range, or may be allowed to vary locally depending on the

dynamic range of the data on the plot. This is often useful in amplifying the local variation

when the absolute range is too large (Figure 5.11).

The tool is supplied with an interactive member selection legend (Figure 5.11). En-

abling or disabling a legend item enables or disables the corresponding data-transect plot

as well as the corresponding contour in the spaghetti plot. This can be used to reduce
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clutter in both plots, as well as reduce bias in the original mean by removing the poorly

performing members.

Figure 5.11

The data-transect plot and interactive legend.

5.3.3.2 Colormap

Application of a colormap for the chosen uncertainty metric and data values to the ge-

ographic extent was particularly useful in exploring the overall distribution of uncertainty

in the dataset. It has been our experience that many geo-visualization packages use the

rainbow colormap by default in spite of its known perceptual deficiencies [10]. We have

made a conscious effort to avoid the use of the rainbow colormap with the objective of
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increasing the awareness of its shortcomings in the geo-scientific community. We choose

a green saturation colormap as a default for this tool (Figure 5.7).

5.3.3.3 Interactive Visual Queries

The spaghetti plots can be generated interactively. Clicking any location on the pri-

mary display within the geographic extents of the simulation triggers a visual query that

returns either the ensemble mean or the bootstrap mean at that location. The returned

value is used to generate a new spaghetti plot. This is extremely useful in situations where

the user is curious to see the spaghetti distribution at a specific location. The background

colormap can be used to visually identify these regions or observe ‘interesting’ features

that may be clicked upon to generate corresponding spaghetti distributions. Most tools

that generate spaghetti plots for meteorologists lack features to visually query the data.

Much of the usability of the tool depends on it being reasonably interactive. The abil-

ity to change variables, timesteps, or vertical slices independent of other options enables a

quick view of different data across the same set of metrics or along the same data-transect.

Typical load times for fresh data depended on whether the data was in recent cache, in

which case load times were 3 to 4 seconds. These lengthened to about a minute when

loading from disk. Once loaded to memory the tool is fully interactive. Apart from se-

lective fetching of data-slices, no other out-of-core memory/data management techniques

were employed. The design of Noodles allows such features to be easily added which

could significantly enhance the tool. Interactivity of the data-transect plot and its legend
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further extend the flexibility of the tool. Typical update time for all elements of the ren-

dering did not produce any perceivable lag.

5.3.4 Expert Evaluation of the tool

We describe the opinions of two meteorologists who used to tool for ensemble analy-

sis. Specific inferences pertaining to the simulation are discussed in the next section.

5.3.4.1 Effectiveness of Uncertainty Visualization

The uncertainty glyphs and uncertainty ribbon provide an alternative visualization of

uncertainty. The glyphs present uncertainty at a point but do not obscure underlying data

as much as a colormap of the uncertainty would. An uncertainty ribbon displays the vari-

ation of the uncertainty metric along a contour. Both of these techniques compliment the

use of spaghetti plots. The spaghetti plots are drawn by generating iso-valued contours

which imply geographic separation. When individual ensemble members on a spaghetti

plot do not coincide, inferring spatial uncertainty is incorrect. Also, attempting to quantify

such uncertainty by using techniques such as finding the shortest distance between con-

tours is not physically meaningful. A simple example of this would be trying to compare

the weather at Philadelphia and New York using the distance between them! Addition-

ally, separation within members of a spaghetti plot is highly dependent on the gradient

of the 2D field [107] (Figure 5.19 and Figure 5.20). While spaghetti members may be

close to one another in regions of steep gradient (Figure 5.13) and be widely separated in

regions of low gradient (Figure 5.19), the actual uncertainty might be higher in the region
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of the steep gradient where the spaghetti members appear clumped together because even

nearby locations may exhibit large value differences (the corresponding data-transects,

Figure 5.14 and Figure 5.20). Thus, spaghetti plots need to be interpreted as physically

separate contours and not as a measure of spatial uncertainty. On the other hand, uncer-

tainty glyphs and uncertainty ribbons represent the uncertainty at specific grid locations

which are geographically co-located and are in essence different from spaghetti plots.

The meteorologists asserted that the uncertainty ribbon and the glyph based visualiza-

tion were both useful to get an overview of the uncertainties in the data. They still found

that the uncertainty ribbon was more effective than the uncertainty glyphs. Meteorologists

traditionally work with iso-contours and find a continuous ribbon-like visualization more

easily interpretable. They found the glyphs with graduated colors to be difficult to com-

prehend. Although the glyphs were a good technique to indicate the distribution of the

members, they tended to exaggerate the outliers. Small glyphs that have large variances

may appear smaller than glyphs with relatively smaller variances but with large outliers.

It is possible that the glyphs were overloaded with information, partly because it is easier

to interpret other uncertainty metrics such as the 95% confidence interval, which have a

single value mapped to the size of the glyphs.

5.3.4.2 Effectiveness of Interactivity

The meteorologists found the interactivity of the tool extremely useful. Being able to

switch variables while keeping the data transect and the visualization techniques consistent

was very useful. The coordinated data-transect plots allowed them to easily verify data
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distributions across the cold or warm fronts. Being able to easily move in the timeline

made it convenient to observe the evolution of the storm and the associated uncertainty

(Figure 5.7).

In particular, they found the interactive legend and the color-scheme to be very useful

for distinguishing between ensemble members (Figure 5.11). The ability to select which

ensemble members to visualize helps to reduce clutter and provides control in the anal-

ysis. The color scheme significantly helped to visually differentiate between members.

The zoom and pan options were also beneficial, especially because of the lack of such

interactive features in operational use.

5.3.4.3 User feedback

The meteorologists spent a lot of time with the data-transect plot and the spaghetti

plot. Part of the reason could be because of their previous training with spaghetti plots.

The time-line and the variable swapping widget were also used often. It must be noted that

they focused primarily on looking at the deviation of a particular cumulus scheme (Grell-

Devenyi scheme, section 5.3.5.2). In general, the experts were able to make sense of the

physical processes governing the uncertainty in the ensemble. Previous research (e.g.,

[65]) has shown that, for WRF simulations, forecast degradation is not significant until

at least 72 hours after initialization. As such, forecast errors at 48 hours, while present,

were not overwhelming to the meteorologists. They expressed the desire to be able to load

multiple datasets and use the tool to look at other simulation runs.
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5.3.5 Case Study: 1993 “Superstorm”

The 1993 “Superstorm,” also referred to as the “Storm of the Century,” was a unique

weather event that occurred between 12 March and 14 March [44] and affected a region

stretching from Central America to Canada (Figure 5.12). The storm formed from a weak

cut-off low pressure system over the Gulf of Mexico and quickly intensified, undergoing

bomb cyclogenesis (a central pressure decrease of 24 mb in 24 hours) as it tracked north-

eastward along the East Coast [44, 102]. It caused record low pressure, low temperatures,

winds, and snowfall in the Eastern United States and resulted in over 250 fatalities. The

storm was also a significant milestone for numerical weather prediction in the United

States. For the first time, a number of computer models successfully predicted the severe

threat days ahead of its occurrence [102] (note the Weather Research and Forecasting [67]

model is not part of this list as it was developed within the last decade). The size, intensity,

and time of occurrence of the storm make it unique and important, and contribute to it

being a well-studied severe weather event, e.g., [17, 39, 85].

This section describes the design, visualization, and subsequent analysis of the severe

weather event by two meteorologists.

5.3.5.1 Formulation of the ensemble and running WRF

The National Weather Service Science Operations Officers / Science & Training

Resource Center (STRC) Weather Research and Forecasting (WRF) [67] Environmental

Modeling System (EMS) Version 2.0 was used for the simulation. The Advanced Research

WRF numerical solver core was used in this simulation experiment since it is intended to
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Figure 5.12

Satellite image showing the extent of the 1993 “Superstorm”.

be a research core allowing one to conduct a more thorough simulation. WRF simula-

tions are conducted in three steps involving pre-processing, running of the model, and

then post-processing the output. Additionally, for ensemble simulations, one must rerun

the three-stage process for the different scenarios. The appendices describe each of these

stages in more detail.

Ensemble numerical simulations are conducted through one of two possible meth-

ods: a perturbation of initial conditions, or by altering model parametrization schemes.

A parametrization ensemble was selected since a fundamental aspect of this work is to

identify the uncertainty associated with model physics schemes. Core model physics

parametrizations [89] of cumulus and microphysics schemes were identified by a mete-

orologist to be of research interest.
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The cumulus scheme determines the convective behavior of clouds in the atmosphere.

A cumulus scheme is recommended if the grid coarseness is greater than 10 kilometers.

The cumulus parametrization schemes tested were the:

1. New NAM Kain-Fritsch scheme

2. Betts-Miller-Janjic scheme

3. Grell-Devenyi scheme

Microphysics schemes determine how the models resolve atmospheric microphysical

processes by the use of moments to determine flow of water and ice. The microphysics

parameterization schemes tested were the:

1. Kessler scheme

2. Lin et al. scheme

3. WSM Single-Moment scheme

4. WSM Single-Moment 5-class scheme

5. New Ferrier scheme

6. Thompson et al. scheme

The Lin et al. scheme is recommended for fine resolution runs having a grid spacing

of less than 2 kilometers. The meteorologists were mildly curious to see how a scheme

recommended for fine grids would perform on a relatively coarser grid and so the Lin et

al. scheme was included in the study.

Planetary boundary layer physics schemes resolve the near surface atmospheric anoma-

lies which can be very different and more turbulent than the rest of the atmosphere. The
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Mellor-Yamada-Janjic planetary boundary layer physics scheme was tested for the simu-

lation, except for the combination of Betts-Miller-Janjic cumulus scheme and Kessler mi-

crophysics scheme, where the required planetary boundary layer physics was the Yonsei

University scheme. Combinations of the 3 cumulus schemes and 6 microphysics schemes

resulted in 18 ensemble members.

The simulation grid had dimensions of 269 (west-east) × 240 (south-north) × 30 (ver-

tical). The latitudinal extent was from 21.19 N to 42.26 N while the longitudinal extent

was from 103.14 W to 67.36 W, resulting in an average grid-spacing of 12 kilometers. In

this case, the North American Regional Reanalysis (NARR) dataset [66] was the source of

the input weather data, interpolated and re-gridded to the domain internally by WRF.

The simulation was configured to run on two nodes of a cluster, with each node having

two dual-core AMD Opteron 2218 (2.6 GHz processors and 8 gigabytes of memory).

The cluster used gigabit ethernet for internode communication. The typical runtime for

each simulation was about 10 hours. The model run produced hourly predictions up to

48 hours. The ensemble simulation generated a 133 gigabyte dataset. The variables of

interest, water-vapor mixing ratio, perturbation potential temperature, and perturbation

pressure, were extracted during post-processing to create a 22 gigabyte binary dataset. No

interpolation was necessary because all three variables used an identical Arakawa grid and

could be used directly for visualization in Noodles.
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5.3.5.2 Expert Evaluation: Model Parametrization Inferences

Two meteorologists used the tool to perform analysis of the ensemble. Recall that

the scope of the study is ensemble precision, not ensemble accuracy. Verification of the

ensemble forecast against ground truth is outside the scope of this work.

One of the parametrizations that the meteorologists were curious about during the de-

sign phase was testing the performance of the Lin et al. microphysics scheme, recom-

mended by WRF for fine grids of less than 2 kilometer spacing, on coarser grids. No

divergence of the performance of the scheme was found with respect to other ensemble

members.

However, the Grell-Devenyi cumulus scheme produced output that was not consis-

tent with the other ensemble members for spatial regions that tracked the cold front (Fig-

ure 5.13 – Figure 5.18). A cold front is a boundary between a cold and warm air mass

typically associated with a synoptic cyclone. This clashing of air masses was expected to

correspond to an area of high uncertainty, which was observed using the tool. The coor-

dinated geographic and data-transect plot revealed a sharp difference in the perturbation

potential temperature profile in the Grell-Devenyi scheme (Figure 5.13 and Figure 5.14).

Correspondingly, the position of the warm sector was displaced farther west in the Grell-

Devenyi ensemble members. A similar bias was noted in the perturbation pressure field,

as the location of the low pressure center as presented by the Grell-Devenyi scheme was

much farther south than for the other two cumulus parametrizations (Figure 5.15 and Fig-

ure 5.16). Additionally, the water-vapor mixing ratio appeared more sensitive to the cu-

mulus scheme than the microphysics scheme in proximity to the cold front, which was
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not surprising due to the convective thunderstorm activity associated with the front (Fig-

ure 5.17 and Figure 5.18).

Figure 5.13

Bias in the resolution of the cold-front for perturbation potential temperature.

The meteorologists concluded that the Grell-Devenyi scheme demonstrated previously

unknown bias in the perturbation potential temperature and perturbation pressure fields at

lower levels of the atmosphere. The meteorologists also confirmed that the scheme was

in general agreement with the other ensemble members at higher levels (Figure 5.19 and

Figure 5.20). Further investigation into the cause of these biases should be conducted to

improve model forecasting.

This uncertainty visualization tool can provide important feedback about a model fore-

cast to operational meteorologists. Likewise, the ability to interactively remove parametriza-
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Figure 5.14

Sharp change in data-transect through Figure 5.13.

Figure 5.15

Bias in the resolution of the storm center for the pressure perturbation.
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Figure 5.16

A data transect through Figure 5.15.

Figure 5.17

Bias in water-vapor mixing ratio corresponding to Figure 5.13 and Figure 5.15.
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Figure 5.18

Data transect through Figure 5.15.

Figure 5.19

Spaghetti plot of perturbation potential temperature field at upper eta-levels.
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Figure 5.20

General agreement among schemes corresponding to Figure 5.19.

tions from the ensemble will help to improve the accuracy of ensemble forecasts by sys-

tematically removing biases in the ensemble members. Currently, operational meteorolo-

gists do not have this option and would greatly benefit from such a tool.

5.4 Iterated Prototype: Noodles 2

The results from Noodles were very encouraging. We received valuable feedback

from the domain experts based on which we reiterated the software prototype to design

‘Noodles 2’. The following sections describe the software architecture, user interface,

visualization capabilities, and case studies of severe weather events.

5.4.1 Software Architecture

Noodles 2 has been designed following a layered software architecture as illustrated

in Figure 5.21. The user interface layer sits at the very top and ‘drives’ the layers below
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it. This allows one to easily add or modify interface components without any changes

to the visualization subsystem. The user interface triggers signals that the underlying vi-

sualization layer intercepts and uses to update itself. This allows one to open multiple

independent views with the same or different variables and choose independent visualiza-

tions. Additionally, custom visualizations can be easily added to existing visualization,

views or completely separate views can be created.

Figure 5.21

Software architecture of Noodles 2.

The visualization layer makes requests to the Ensemble Data Manager for all ensemble

data accesses. The software has been designed to manage ensemble data separately from

other auxiliary data. Variables and data are loaded by the Ensemble Data Manager layer

dynamically and transparently from the visualization layer. Only the current time step and

slice of currently loaded variables are kept in memory. With support for the NetCDF [78]
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data format in Noodles 2, a large number of variables can be read and we are no longer

limited to just the three variables that were studied in the previous prototype. The modular

architecture of the system allows for easy extensibility. All other data requests such as

the loading and unloading of auxiliary shapefiles or imagery is managed by a generic data

manger and shared across visualization views.

5.4.2 User Interface

Noodles 2 presents users with an interface as illustrated in Figure 5.22. The region

marked ‘1’ is the primary display area. Region ‘2’ is an area that provides the user with

information about the dataset. Region ‘3’ constitutes all the different controls that enable

a user to interact with the visualization. These allow a user to choose a variable, select a

vertical level, enable spaghetti, enable or disable ensemble members, choose the type of

uncertainty visualization, look at the data transect, and change properties of the shapefiles.

In addition, a time slider, region ‘5’, is provided to animate through time. The description

of the ensemble is inputed to the tool by an XML file.

To allow the analysis of more than one variable, the tool allows users to bring up

multiple views with different loaded variables (Figure 5.24 and Figure 5.26). Each view

has the associated visualization controls to the right.
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5.4.2.1 Visualization Capabilities

The visualization subsystem and the Ensemble Data Manager are the most critical

components and work closely with one another. The GUI serves as a wrapper for all

components.

We ported much of the visualization capabilities of ‘Noodles’ to ‘Noodles 2’. Users

can visualize uncertainty by means of glyphs and ribbons, as well as spaghetti plots. In

particular, the tool allows the user to input their choice of colors for the spaghetti making it

very convenient to design and experiment with different color schemes. The multiple visu-

alization views with independent subset of tools provides users with multiple coordinated

views of different variables for analysis.

5.4.2.2 Interaction Capabilities

Much like its previous prototype, the tool allows one to interactively visualize the

data. Although caching or streaming techniques were not utilized, the tool was still usable

with tolerable delay (in the order of a few seconds) during the loading of the data. Once

loaded, the visualizations could be rendered fairly interactively. One can double click the

main view to probe the data value under the mouse cursor and interactively generate the

spaghetti plot for the probed value. In addition, the data transect allows users to look at

cross-sections of values through the grid (Figure 5.26).
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5.4.3 Case Studies

We used the Weather Research and Forecasting (WRF) model version 3.3 [88] with

the Advanced Research WRF (ARW) numerical solver core to run the simulations in

the case studies. This version of the simulation model provides a much larger choice

of parametrizations. With the objective of evaluating these parametrizations for severe

weather events, we generated two ensemble data sets for evaluation using Noodles 2. We

first describe the various cumulus and microphysics parametrizations that we used to cre-

ate the ensemble and then describe the two severe weather events.

5.4.3.1 Ensemble Formation and Running WRF

Various cumulus parametrizations that were included in this study were:

1. No cumulus scheme

2. Kain-Fritsch scheme

3. Betts-Miller-Janjic scheme

4. Grell-Devenyi scheme

5. Simplied Arakawa-Schubert

6. Grell-3 scheme

7. Tiedtke scheme

8. Zhang-McFarlane scheme

9. New SAS scheme

Various microphysics parametrizations that were included in this study were:

1. No microphysics scheme

2. Kessler scheme

3. Lin (Purdue) scheme
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4. WSM Single Moment 3 class scheme

5. WSM Single Moment 5 class scheme

6. Eta (Ferrier)

7. WSM Single Moment 6 class scheme

8. Goddard 6 class scheme

9. Thompson scheme

10. Milbrandt-Yau double moment scheme

11. Morrison double moment scheme

12. SBU-YLin scheme

13. WRF Double Moment 5 class scheme

14. WRF Double Moment 6 class scheme

A total of 126 runs for all combinations of the above options were simulated. The

data obtained was on a spatially staggered Arakawa-C grid. We performed a post pro-

cessing step using the Universal Post Processor (UPP) 1.0 which not only interpolated the

data back to an A grid, but also generated many derived meteorological variables such

as convective inhibition (CIN), relative humidity (RH), and Convective available potential

energy (CAPE).

5.4.3.2 Case Study 1: Hurricane Fran’s extra-tropical transition

Hurricane Fran (Figure 5.23) [62] was a major hurricane to hit the eastern United

States in the 1996 Atlantic hurricane season. It emerged from the west coast of Africa

on 22 August as a tropical wave and became a tropical storm on 27 August. By 31 Au-

gust, it had reached hurricane strength and followed a west-northwestward direction in the

wake of Hurricane Edouard [75]. It recorded surface wind speeds of upto 15 knots on 5
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September as a category 3 hurricane. It weakened to a tropical storm over North Carolina

and subsequently became a tropical depression over Virginia. It gradually lost its warm

core over the eastern Great Lakes and became extra-tropical at about 00:00 UTC on 9

September.

Figure 5.23

Satellite image of Hurricane Fran on 5 September 1996.

In this simulation, we trace the extra-tropical transition of Hurricane Fran. This was a

48 hour simulation starting at 1996-09-08 00:00 UTC. The simulation grid had dimensions

of 298 (west-east) × 298 (south-north) × 37 (vertical). The latitudinal extent was from

16.95 N to 49.81 N while the longitudinal extent was from 105.41 W to 58.60 W, resulting

in an average grid-spacing of 12 kilometers. The North American Regional Reanalysis

(NARR) dataset [66] was the source of the input weather data, interpolated and re-gridded

to the domain internally by WRF.
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Post-processing of the data was a two step process with UPP performing the computa-

tions producing Grib files and subsequent conversion to NetCDF files. This resulted in a

final dataset that was about 1.6 TB in size.

Various variables were visualized using the tool as illustrated in Figure 5.24.

Figure 5.25

Satellite image of the Mississippi-Alabama tornados on 26 April 2011.

5.4.3.3 Case Study 2: Misissippi-Alabama Tornado Outbreak

The largest tornado outbreak ever recorded happened from 25 April 2011 to 28 April

2011 (Figure 5.25). It affected very large portions of the United States with catastrophic

destruction over Alabama. Over 330 tornadoes were recorded during this period. A pow-

erful jet stream, strong wind shear, low pressure center moving north-eastwards, moist

warm air, and conducive temperatures resulted in a very active storm system.
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In this simulation, we attempt to recreate the conditions of the tornado outbreak with a

96 hour simulation starting at 2011-04-24 12:00 UTC. The simulation grid had dimensions

of 298 (west-east) × 298 (south-north) × 37 (vertical). The latitudinal extent was from

16.5 N to 47.0 N while the longitudinal extent was from 107.0 W to 57.5 W, resulting in an

average grid-spacing of 12 kilometers. Here too, the North American Regional Reanalysis

(NARR) dataset [66] was the source of the input weather data.

Post-processing of the data involved running UPP to produce Grib files which were

converted to NetCDF files resulting in a 3.3 TB dataset.

Various variables visualized in Noodles 2 is illustrated in Figure 5.26.

5.5 Discussion

We presented the iterative design of two prototypes for meteorological ensemble visu-

alization. We also reported the opinions of two experts in using the tool to perform analysis

on severe weather events. They found many of the features to be useful in performing me-

teorological analysis and speculated that this could be very useful operationally.
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CHAPTER 6

SOFTWARE PROTOTYPE FOR RIVER-FLOW AND FLOOD-FORECAST

ENSEMBLES

In this chapter, we describe the development of a tool named FloodViz and its visu-

alization capabilities that will allow operational personnel in National Weather Service’s

(NWS) Lower Mississippi River Forecast Center (LMRFC) to visualize and analyze river-

ine flood simulation output. In particular, it will have the capability to visualize ensemble

simulations and the resulting uncertainty. This is a collaborative effort between us at Mis-

sissippi State University and hydrologists at the Lower Mississippi River Forecast Center

(LMRFC) who provide stake-holder feedback and expert guidance. We expect FloodViz to

provide improved visualization and systems capabilities to help hydrologists in determin-

ing the extent of flooding, increasing their knowledge and understanding of such effects.

The tool will also allow forecasters to relay more information to the emergency manage-

ment community while issuing forecasts to help protect life and property.

6.1 Operational Flood Forecasting

The simulation model in operational use at the Lower Mississippi River Forecast Cen-

ter (LMRFC) is the Hydrologic Engineering Center’s River Analysis System (HEC-RAS)

[14]. The software package allows personnel to perform one-dimensional steady flow,
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unsteady flow, sediment transport/mobile bed computations, and water temperature mod-

eling.

The HEC-RAS modeling system is comprised of four components for steady flow wa-

ter surface profile computations, unsteady flow simulation, movable boundary sediment

transport computations, and water quality analysis. The system uses various types of input

data for the steady and unsteady flow simulation such as precipitation, plan of the simu-

lation extent, geometry and surface properties, and sediment data, grouped into a project

space.

6.1.1 Ensemble Data

Simulation of river flow is imprecise and various types of uncertainties contribute to

the inaccuracy and imprecision in the simulation. To account for some of the precipitation

and modeling uncertainties, the hydrologists at LMRFC use a 13 member river forecast

ensemble. The members of the ensemble are constituted from the Qualitative Precipita-

tion Forecast (QPF) ensemble as input to the HEC-RAS model. The 13 QPF inputs are

comprised of the average precipitation estimates for 0, 12, 24, 48, and 72 hours, and max-

imum and minimum precipitation estimates for 12, 24, 48, and 60 hours. The choice of

these input quantities have been determined by operational requirements. Generally, the

precipitation estimates tend to deviate substantially after 48 hours.

All visualizations represented here are based on a routine operational simulation run

for a flood event between 10 July 2010 and 1 August 2010 which was provided to us by

the LMRFC personnel.
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6.1.1.1 Uncertainty Quantification

In many RFCs, ensemble runs are still at an experimental stage. As a result, methods

to quantify the resulting uncertainty in the distribution are limited. Discussions with our

LMRFC partners has indicated that they would initially be interested in descriptive statis-

tics such as mean and variation of the water level and then figure out which other advanced

metrics might be appropriate and applicable.

6.1.2 Geometry

To perform a hydraulic study, it is necessary to collect data both upstream and down-

stream of the selected area in order to model the boundary conditions effectively. A chosen

study area with a network of connected streams and rivers along with the floodplain is re-

ferred to as a plan (Figure 6.1).

For each river, multiple cross-sections provide information about the ground-surface

properties that are used by the modeling system to route the water. Cross-sections are

typically 1D surveys from one side of the river to the other and perpendicular to the flow.

They extend outwards much beyond the banks of the river and into the floodplain. The

size of the cross-sections is very important in determining various flooding scenarios. In-

formation of levees, bridges, embankments, and other channel modifications are important

and may affect simulation results. Cross-sections must be carefully chosen to capture the

effects of the presence of these features.
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A collection of channel data from a selection of river cross-sections is called a river

profile (Figure 6.1). A group of related data elements is collectively called as a HEC-RAS

project.

6.1.3 Visualization Capabilities in HEC-RAS

The HEC-RAS tool suite is capable of generating plots of the river-system plan, cross-

sections, profiles, rating curves, hydrographs, and very basic 3D scenes rendered with con-

nected lines. The tool also allows limited pairwise comparisons of model runs. Figure 6.1

illustrates some of the current features available in HEC-RAS.

Figure 6.1

A screen-shot of visualization capability in HEC-RAS.
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Figure 6.2

High level block diagram of FloodViz.

6.2 Software Engineering Effort

The software development objective is to design a ‘future-ready’ tool that will inte-

grate into National Weather Service plans to implement a next generation forecast and

modeling system called the Community Hydrologic Prediction System (CHPS) [64]. Fig-

ure 6.2 illustrates a high-level block-diagram of the software framework for Floodviz. The

tool focuses on providing improved visualization and analysis capabilities for its users.

A spiral software development model has been followed by setting up long-term goals

and executing software development cycles of short-term milestones, alpha-testing, and

beta-testing. Development has been done in C++ and OpenGL. The GUI framework has

been built using the Qt 4.6 software development kit. A number of open-source libraries

have been used such as pthreads, boost, and GDAL/OGR. The system is cross-platform

compatible and is capable of running on Linux, Mac OS, and Windows.
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An important component in the development efforts has been the design of the HEC-

RAS data reader. We were unable to obtain a C/C++ API for reading the data. Only a Java

version of the HEC-RAS API was available. We had to resort to develop C++ wrappers

around the Java API for FloodViz. This results in a performance downgrade although not

as much as to affect its interactive usability.

Digital Elevation Models and tiled imagery for the river-system extent can also be

read into Floodviz and are rendered with a level-of-detail algorithm to preserve the river

channel while maintaining interactive frame rates.

Figure 6.4

Interactive legend with categorical colors.

6.3 Visualization Views

FloodViz provides four different views for visualization of simulation output as de-

scribed in the sections below. Besides providing various controls to adjust the colormap,

transparency, and rendering order, it also provides an interactive categorical color legend

(Figure 6.4) that allows users to easily enable or disable ensemble members for ease of
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analysis. In addition, the multiple linked views provide an indication of the currently

active cross-section view in the plan-view.

6.3.1 Cross-Section View

A cross-section view shows the water level at fixed cross-sections along the river.

Geometry data and simulation output is illustrated in this view. It is important to note that

there are some scenarios in which the cross-sections do not go out far enough into the

floodplain. In such situations the model is unable to account for the changes to the flood

level as a result of the ‘ineffective areas’ leading to uncertainty. The cross-section view

helps in the identification of such areas. Figure 6.5 illustrates one such cross-section on

the Red Creek river in the Pascagoula region, MS.

6.3.2 River Profile View

A profile view shows the water level at cross-sections downstream for a reach of a

river. Figure 6.6 illustrates the river profile for the Red Creek river.

6.3.3 Plan View

The plan view provides an overview of the inundation extent (Figure 6.7). A Dig-

ital Elevation Map (DEM) of the terrain is used to determine the extent of flooding by

extending the the output water level to intersect with corresponding heights in the DEM

thereby generating the flood boundary. The DEMs tend to be enormous in size and we use

a level-of-detail approach to allow interactivity while providing a high resolution inunda-
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tion map. The view is also useful in identifying regions where improvements in the survey

are essential. In addition, this view also helps in easily identifying poor model behavior.

6.3.4 3D View

A river-channel preserving 3D continuous level-of-detail flyover of the terrain allows

hydrologists to view the extent of the flooding in 3D (Figure 6.8). This sub-section is

provided for completeness since uncertainty visualization techniques for this view are yet

to be implemented.

Figure 6.5

Cross-section view of the river.

6.4 Uncertainty Visualization Techniques

Various types of uncertainty visualization techniques are provided in the different

visualization views that enable hydrologists to compare and contrast between the different

model runs.
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Figure 6.6

Profile view of the river.

Figure 6.7

Plan view illustrating uncertainty in extent of flooding.
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Figure 6.8

3D View of the extent of flooding.

6.4.1 Line plots

Line plots are the simplest form of graphical representation in the cross-section and

profile views (Figure 6.5 and Figure 6.6). The value of water surface elevation from each

of the model outputs are rendered with the maximum predicted water surface. This simple

visualization provides users with a detailed rendering of the different levels expected at

the banks and on the flood plains for cross-sections. The individual lines provide the users

with a sense of the uncertainty in the output. For the river profile view, it provides a trend

for comparison between different simulations, especially with temporal animation. The

interactive legend provides users with the capability to add or remove unwanted or poorly

performing members of the ensemble.

While line plots are adequate for water surface elevations in perspective of the ground

level, other variables in the simulation such as stream velocity and discharge amounts
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cannot be represented by a line at a certain distance from the ground. Other overloaded or

multivariate visualizations were explored as detailed in later sub-sections.

6.4.2 Box plots

To derive a sense of the distribution of the ensemble members, we constructed box-

plots of the data (Figure 6.9 and Figure 6.10). The mean of the water surface for the

time-step and the mean of the maximum water surface elevations are displayed along

with small notches for individual ensemble members under the box-plots. The resulting

visualization provides users with an illustration of the uncertainty of the distribution along

with individual member levels. This is particularly useful in the river profile view as

trends between cross-sections can be analyzed. Still, this visualization does not illustrate

non-elevation type of variables.

Figure 6.9

Close-up of a box plot.
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Figure 6.10

Box plot in the profile view illustrating water surface elevation.

6.4.3 Glyph plots

We adopted a glyph based approach to encode other non-elevation variables (Fig-

ure 6.11 and Figure 6.12). In this view, circular glyphs are rendered at the water surface

level for each member of the ensemble. The glyphs are color coded for easy identification.

The radius of each glyph is mapped to the value of the variable normalized to a maximum

and minimum size. This representation encodes the water-level to the vertical position

of the glyph and another chosen variable of interest to map to the size of the glyphs. The

differences between glyphs from the model runs illustrates the individual differences high-

lighting the uncertainty.

6.4.4 Star uncertainty glyphs

The glyph plots restricts us to two, maybe three variables: water surface elevation,

maximum water surface elevation, and another variable of interest. We used a star plot
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Figure 6.11

Close-up of the glyphs scaled by size.

Figure 6.12

Glyphs illustrating the water surface elevation.
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to encode more than three variables in a visualization (Figure 6.13 and Figure 6.14). The

length of an arm of the star plot represents the derived mean of a variable. The saturation

of the color of the arm represents the standard-deviation or uncertainty of the variable. A

circle is drawn around the star to illustrate the maximum possible value. Thus, normal-

ized values of the variables are used with the maximum value always corresponding to

the radius of the circle. Any number of variables can be represented using this visualiza-

tion, although the cognitive load will increase tremendously. This approach allows one to

explore the uncertainty relationships between different variables.

Figure 6.13

A star (multivariate) uncertainty glyph.

6.4.5 Temporal multivariate uncertainty glyphs

To give users a sense of the temporal tendencies of variables, we extended the design

of the star uncertainty glyphs to represent temporal trends (Figure 6.15 and Figure 6.16).
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Figure 6.14

Star glyphs illustrating the water surface elevation.

Multiple star plots are rendered for each time-step starting at time-step 0 and progressing

upto the current time-step, with each star rendered at a slight angle to the previous such

that the entire pie is filled for the final time-step. Thus, for a given time-step, the arm of the

star-glyph sweeps out a pie for a variable. The radius used at each time-step is proportional

to the mean variable value and the color used is proportional to the standard-deviation of

the variable.

This representation can also support any number of variables but will increase the

cognitive load significantly as the number of variables increases.

6.4.6 Inundation map with uncertainty

An inundation map depicting the uncertainty of the extent of flooding can be gener-

ated from the plan view. We composite multiple inundation maps using a simple trans-
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Figure 6.15

Temporal glyphs illustrating three variables over time.

Figure 6.16

Temporal glyphs in the profile view.
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parency based blending function as illustrated in Figure 6.7. The transparency, visibility,

and color-mapping of variables on individual inundation maps can be controlled leading

to a high-dimensional visualization. The representation leads to a visualization where

multiple layers of inundation maps provide a sense of the uncertainty in the simulation

and extent of flooding. Figure 6.7 illustrates this where the colormap indicates the depth

of water. These maps help hydrologists to understand and identify areas that all models

agree upon leading to a high probability of inundation. These maps also help them to pick

out extreme scenarios which tend to be rare but are usually far more devastating.

6.5 Evaluation

The visualizations were presented to a hydrologist who performed evaluations from

an operational perspective. He found that the line plots (Figure 6.5 and Figure 6.6) pro-

vide a nice and simple representation of the ensemble members and directly describe the

uncertainty. This is both easy to read and easy to interpret and are like an extension of

currently used hydrographs.

Among the techniques explored, he found the box-plots to have the best appeal (Fig-

ure 6.10). Although many of the individual ensemble members tend to remain in the same

relative location within each box-plot, it does give a good indication of how the members

compare to each other. The box-plots vary with time, which can be changed with the time

slider, which is a helpful addition. The uncertainty can also be well estimated using the

area of the actual box.
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He thought that the star representation (Figure 6.14) definitely allows for more vari-

ables to be plotted, but when the actual value of a variable is low, it becomes difficult to

assess. In other words, when the length of the arm is small, not much information can be

taken from the plots. However, this does provide a relatively efficient way to compare in-

formation from two locations along a river reach, despite the fact that the unique ensemble

members are not directly represented and only the overall uncertainty is shown.

He thought that the temporal glyphs (Figure 6.16) were a good idea but there appeared

to be just too much going on. Also, it is difficult to read the bar graphs associated with

each variable since the x-axis is not a straight line. He found himself constantly turning

his head to read the graphs. It might be useful to have control widgets that can rotate the

glyphs. Also, it is difficult to see information from each individual plot unless zoomed in

on the glyph. He suggested that we plot each variable in a different color.

He felt that the glyph plots (Figure 6.12) had a lot of potential. Centering the circular

glyphs over the corresponding water surface levels seems to help. More than any other of

the approaches presented, the glyphs provide a good indication of how values are changing

along the river reach.

He found the uncertainty inundation maps (Figure 6.7) to be extremely useful in de-

termining the extent of the flooding and how the ensemble members deviated from one

another.
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6.6 Discussion and Future Work

In this chapter, we described the architecture and uncertainty visualization capabilities

of a tool named FloodViz. In particular, the ensemble uncertainty visualization capabilities

were highlighted. We also presented an evaluation by a hydrologist who found some of the

techniques such as the box-plots and uncertainty inundation maps to be very helpful while

some of the other techniques such as glyph-plots had good potential. He also felt that some

of the techniques might be too over-loaded and might require more careful redesign.

Many of the capabilities are constantly being re-evaluated and re-designed. In the

coming months, we have planned more evaluations to assess which of the techniques will

finally be a part of the tool when deployed operationally. Future plans include further

exploration of uncertainty visualization techniques and improved visual analytic capabili-

ties.
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CHAPTER 7

CONCLUSION

In this dissertation, we presented a user study to compare effectiveness of four uncer-

tainty visualization techniques on 1D and 2D datasets. We had hoped that we would be

able to provide guidelines for scientific visualization design with uncertainty from the re-

sults of our study but our results are such that we cannot identify clear winners. We did not

find a consistent ordering for the four techniques for all the tasks, although the particular

findings could be useful for uncertainty visualization design. Errorbars consistently per-

formed poorly compared to the other evaluated techniques. The accuracy of responses for

1D tasks was higher than that of the 2D tasks although 2D tasks consistently took longer

to respond to. We also found that effectiveness of uncertainty visualization techniques

were highly dependent on the task at hand. User efficiency between the two search tasks

was significantly different from one another which raised interesting questions. Surface-

coloring worked well except for counting 2D data features. Performance of Glyph-size

and Glyph-color seemed reasonable. We feel our results could help researchers in their

choice of uncertainty visualization technique for their scientific tasks.

We expect our findings to be useful for researchers who have a need of displaying

dense 1D or 2D data with uncertainty. In particular, we see applications from geoscience
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such as visualization of severe weather outbreaks, precise terrain modeling, and moving

front locations to benefit from this study.

We presented a method to create synthetic data with systemic and random uncertainty

components. In addition, we also presented an Uncertainty Evaluation Framework which

provides a structured design environment which can be used to create effective uncertainty

visualizations across different visualization paradigms.

We also presented a tool named Noodles that was developed for operational meteorol-

ogists to visualize ensemble uncertainty. Two new 2D uncertainty visualization techniques

were implemented to represent the uncertainty in weather ensembles. Two experts evalu-

ated these techniques alongside the conventionally used spaghetti plots and it appears that

there is substantial research and operational benefit of the interactive application of these

techniques. For the 1993 ‘Superstorm’ simulation dataset in particular, the Grell-Devenyi

cumulus scheme was found to be in disagreement with the other schemes for the cold

and warm fronts which raised important questions regarding the choice and effectiveness

of the various parameterization schemes for different weather conditions. It also made

the meteorologists think that our findings could be of interest to the designers of these

schemes.

We then presented the design and software architecture of an iterated software pro-

totype named ‘Noodles 2’. The various improvements and additional features described

were based on expert feedback and user interaction. Also, we described the setup and

design of a more extensive ensemble simulation to study two additional weather events:

Hurricane Fran and the Alabama-Mississippi tornado outbreak. One of the meteorolo-
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gists, who served as domain experts who evaluated the tools, remarked that the tool could

be the “state-of-the-art” if used in operational meteorology. These are very encouraging

comments and results which motivate us to further improve the tool.

Additionally, we described the architecture and visualization capabilities of a tool

named FloodViz. In particular, the ensemble uncertainty visualization capabilities were

highlighted. We also presented an evaluation of the techniques by a hydrologist who found

that some of the techniques such as the box-plots and uncertainty inundation maps to be

very helpful while some of the other techniques such as glyph-plots had good potential.

He also felt that some of the techniques might be too over-loaded and might require more

careful redesign.

This research has illustrated that various uncertainty visualization techniques can be

applied to understand uncertainty in ensemble simulations. The tools and techniques de-

veloped in this dissertation have the potential to be useful for meteorologists and hydrolo-

gists and further work to continue this endeavor appears to be beneficial.
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CHAPTER 8

FUTURE WORK

Our results on the differences between uncertainty visualization methods motivate fu-

ture research in this area. With our Uncertainty Evaluation Framework, we plan to use the

results from this study to guide our future uncertainty visualization endeavours. Perceptual

research to identify the reason why the two search tasks differed so significantly could be

potentially beneficial. It may also be very enlightening to research how experts use uncer-

tainty in their decision making process and design experiments around such observations.

We plan to extend this research to evaluate uncertainty visualization techniques for 3D

data as well as time series data. This may be of benefit to users of data that are inherently

3D and have samples in time. Weather researchers for example may significantly benefit

from such knowledge.

The weather simulations open up a host of research questions regarding the sensitivity

of models to various parameterizations. These would be research questions that fall in the

domain of meteorology. Research questions abound in visualization as well. One such

problem is to extend the tool to 3D uncertainty visualization. Implementation of out-of-

core and GPU based techniques can significantly improve the performance and enable it

to read much larger datasets. We plan to continue working with the subject matter experts
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to study ensembles of other events and potentially other datasets such as simulation output

from the Navy Coastal Ocean Model (NCOM) [3, 4].

The FloodViz project is still work in progress. Many of the capabilities are constantly

being re-evaluated and re-designed. In the coming months, we have planned more com-

prehensive expert evaluations to assess which of the techniques will finally be part of the

tool when deployed operationally. Future plans include further exploration of uncertainty

visualization techniques and improved visual analytic capabilities.

8.1 Recommendations for Future Research

The use of visualization techniques for the analysis of ensemble data offers potential

benefits to operational forecasters. From our experience, some avenues of research that

could lead to significant improvement in the field of weather visualization are:

8.1.1 Understanding the forecasters’ needs

The computer scientist is a tool-smith [13]. Close collaboration with domain experts

is necessary to understand their unique requirements. Good understanding of meteorology

and hydrology can go a long way in the design of effective tools that can help save time

and facilitate decision support. Likewise, knowledge of the visualization techniques and

their potential drawbacks can greatly help domain experts too. For example, understanding

the pseudo-banding effects of rainbow colormaps [10] could improve meteorological data

analysis.
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8.1.2 Visualization Techniques

Research focusing on the development of techniques particularly for weather simu-

lation output and hydrology simulation output is necessary. Visualization research must

focus on the analytic requirements (e.g., understanding how meteorologists use multiple

variables and the interaction between the variables to come to a conclusion). It is important

for the computer scientist to understand decision making from simulation models. Fore-

casts are often augmented with real-time sensor data. Data fusion for visualization offers

many challenges and possible research paths. While improved uncertainty visualization of

model simulation output can help the expert, improved visualization for public dissemina-

tion is also very important. Geoscientific visualization research could benefit from tools

like Colorbrewer [33] and insights from MacEachren [56], Bertin [6], Tufte [100, 99, 101],

and Ware [103].

8.1.3 Evaluation

Research must be conducted to evaluate the effectiveness of the devised visualization

techniques, both for the expert and for the public. It is important to understand that the

requirements are somewhat different for each category of users. While experts would

want to understand the science behind the simulation, the general public are interested

in knowing how the weather would affect them. It is important to convey the notion of

‘possibility’ to the public. All visualizations designed should thus be evaluated for their

effectiveness.
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8.1.4 Frameworks

Time invested in the developing visualization frameworks could be of value. As illus-

trated in Noodles 2 and FloodViz, a robust framework augments the research and develop-

ment of new visualization techniques and paradigms.

8.1.5 Engineering prototype software

Investing time and effort to design and engineer prototype software can go a long

way in facilitating improvements and new research. Robust platforms for the research and

development of new visualization techniques and tools can facilitate technology transfer

as well.
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